Created
January 22, 2024 18:11
-
-
Save reycn/33e925eac77f8720dbaec24a97864f21 to your computer and use it in GitHub Desktop.
Revisions
-
reycn created this gist
Jan 22, 2024 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,98 @@ # Interaction library(ggplot2) library(dplyr) tips <- read.csv("https://sebastiansauer.github.io/data/tips.csv") tips %>% group_by(sex, smoker) %>% summarise(tip_groups = mean(tip)) -> tips2 nature_colors <- c("#9B241B", "#014E8D", "#9B7409") # nature brand tips2 %>% ggplot() + aes(x = sex, y = tip_groups, color = smoker) + geom_line(aes(group = smoker)) + geom_point() + geom_hline( yintercept = mean(tips$tip), linetype = 'dotted', col = '#697481' ) + theme_minimal() + theme( panel.background = element_rect(fill = "white"), panel.grid.major = element_blank(), panel.grid.minor = element_blank() ) + scale_color_manual(values = nature_colors) + labs( title = "Moderated Treatment Effects", x = "X", y = "Y", color = "Moderator" ) # Trends library(dplyr) set.seed(12345) T = 100 # no of periods N = 40 # no of subjects dat = expand.grid(t = 1:T, i = 1:N) # Simulate a common AR(1) time trend time.trend = as.numeric(arima.sim(n = T, list( ar = c(0.4, 0.5), ma = c(0.6, 0.5) ))) * 3 + 0.7 * (1:T) dat = mutate( dat, group = ifelse(i > N / 2, "treat", "control"), treat = 1L * (group == "treat"), exp = 1L * (t > T / 2), treat_exp = exp * treat, mu.t = time.trend[t], eps = rnorm(n()), y = mu.t + treat * 40 + treat_exp * 50 + eps ) sample_n(dat, 5) show.plot = function(dat, label = "", show.means = TRUE) { library(ggplot2) gdat = dat %>% group_by(group, t, exp, treat) %>% summarize(y = mean(y)) nature_colors <- c("#9B241B", "#014E8D", "#9B7409") # nature brand x_labels <- c(-2, -1, "Treatment", 1, 2) gg = ggplot(gdat, aes(y = y, x = t, color = group)) + geom_line() + stat_smooth( linetype = "dashed", size = 0.5, level = 0.95, alpha = 0.1 ) + geom_vline(xintercept = T / 2) + theme_bw() + annotate("text", x = T / 4, y = 0.9 * max(gdat$y), label = label) + scale_color_manual(values = nature_colors) + scale_x_continuous(breaks = c(0, 25, 50, 75, 100), labels = x_labels) + labs( title = "Trends", x = "Seasons", y = "Y", color = "Group" ) # + # annotate("label", # x = T / 2, # y = 150, # label = "Treatment") gg } show.plot(dat)