- 
      
 - 
        
Save ringwraith/3b99f0bac2513f34e95db1aa5e74f983 to your computer and use it in GitHub Desktop.  
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | def compare_on_dataset(data, target_variable=None, lr=0.001, patience=150): | |
| from IPython.display import display | |
| df = ( | |
| pd.read_csv(data) | |
| # Rename columns to lowercase and underscores | |
| .pipe(lambda d: d.rename(columns={ | |
| k: v for k, v in zip( | |
| d.columns, | |
| [c.lower().replace(' ', '_') for c in d.columns] | |
| ) | |
| })) | |
| # Switch categorical classes to integers | |
| .assign(**{target_variable: lambda r: r[target_variable].astype('category').cat.codes}) | |
| .pipe(lambda d: pd.get_dummies(d)) | |
| ) | |
| y = df[target_variable].values | |
| X = ( | |
| # Drop target variable | |
| df.drop(target_variable, axis=1) | |
| # Min-max-scaling (only needed for the DL model) | |
| .pipe(lambda d: (d-d.min())/d.max()).fillna(0) | |
| .as_matrix() | |
| ) | |
| X_train, X_test, y_train, y_test = train_test_split( | |
| X, y, test_size=0.33, random_state=seed | |
| ) | |
| m = Sequential() | |
| m.add(Dense(128, activation='relu', input_shape=(X.shape[1],))) | |
| m.add(Dropout(0.5)) | |
| m.add(Dense(128, activation='relu')) | |
| m.add(Dropout(0.5)) | |
| m.add(Dense(128, activation='relu')) | |
| m.add(Dropout(0.5)) | |
| m.add(Dense(len(np.unique(y)), activation='softmax')) | |
| m.compile( | |
| optimizer=optimizers.Adam(lr=lr), | |
| loss='categorical_crossentropy', | |
| metrics=['accuracy'] | |
| ) | |
| m.fit( | |
| # Feature matrix | |
| X_train, | |
| # Target class one-hot-encoded | |
| pd.get_dummies(pd.DataFrame(y_train), columns=[0]).as_matrix(), | |
| # Iterations to be run if not stopped by EarlyStopping | |
| epochs=200, | |
| callbacks=[ | |
| EarlyStopping(monitor='val_loss', patience=patience), | |
| ModelCheckpoint( | |
| 'best.model', | |
| monitor='val_loss', | |
| save_best_only=True, | |
| verbose=1 | |
| ) | |
| ], | |
| verbose=2, | |
| validation_split=0.1, | |
| batch_size=256, | |
| ) | |
| # Keep track of what class corresponds to what index | |
| mapping = ( | |
| pd.get_dummies(pd.DataFrame(y_train), columns=[0], prefix='', prefix_sep='') | |
| .columns.astype(int).values | |
| ) | |
| # Load the best model | |
| m.load_weights("best.model") | |
| y_test_preds = [mapping[pred] for pred in m.predict(X_test).argmax(axis=1)] | |
| print 'Three layer deep neural net' | |
| display(pd.crosstab( | |
| pd.Series(y_test, name='Actual'), | |
| pd.Series(y_test_preds, name='Predicted'), | |
| margins=True | |
| )) | |
| print 'Accuracy: {0:.3f}'.format(accuracy_score(y_test, y_test_preds)) | |
| boostrap_stats_samples = [ | |
| np.random.choice((y_test == y_test_preds), size=int(len(y_test)*.5)).mean() | |
| for _ in range(10000) | |
| ] | |
| print 'Boostrapped accuracy 95 % interval', np.percentile(boostrap_stats_samples, 5), np.percentile(boostrap_stats_samples, 95) | |
| params_fixed = { | |
| 'objective': 'binary:logistic', | |
| 'silent': 1, | |
| 'seed': seed, | |
| } | |
| space = { | |
| 'max_depth': (1, 5), | |
| 'learning_rate': (10**-4, 10**-1), | |
| 'n_estimators': (10, 200), | |
| 'min_child_weight': (1, 20), | |
| 'subsample': (0, 1), | |
| 'colsample_bytree': (0.3, 1) | |
| } | |
| reg = XGBClassifier(**params_fixed) | |
| def objective(params): | |
| """ Wrap a cross validated inverted `accuracy` as objective func """ | |
| reg.set_params(**{k: p for k, p in zip(space.keys(), params)}) | |
| return 1-np.mean(cross_val_score( | |
| reg, X_train, y_train, cv=5, n_jobs=-1, | |
| scoring='accuracy') | |
| ) | |
| res_gp = gp_minimize(objective, space.values(), n_calls=50, random_state=seed) | |
| best_hyper_params = {k: v for k, v in zip(space.keys(), res_gp.x)} | |
| params = best_hyper_params.copy() | |
| params.update(params_fixed) | |
| clf = XGBClassifier(**params) | |
| clf.fit(X_train, y_train) | |
| y_test_preds = clf.predict(X_test) | |
| print '' | |
| print 'Xgboost' | |
| display(pd.crosstab( | |
| pd.Series(y_test, name='Actual'), | |
| pd.Series(y_test_preds, name='Predicted'), | |
| margins=True | |
| )) | |
| print 'Accuracy: {0:.3f}'.format(accuracy_score(y_test, y_test_preds)) | |
| boostrap_stats_samples = [ | |
| np.random.choice((y_test == y_test_preds), size=int(len(y_test)*.5)).mean() | |
| for _ in range(10000) | |
| ] | |
| print 'Boostrapped accuracy 95 % interval', np.percentile(boostrap_stats_samples, 5), '-', np.percentile(boostrap_stats_samples, 95) | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment