-
-
Save rishabh135/d4bfb63dd9759f229b9d59a8988da611 to your computer and use it in GitHub Desktop.
Revisions
-
Chillee revised this gist
Feb 5, 2025 . 1 changed file with 1 addition and 0 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -10,6 +10,7 @@ causal_out, causal_lse = flex_attention(q, k, v, block_mask=causal_mask, return_lse=True) uncausal_out, uncausal_lse = flex_attention(q, k, v, block_mask=uncausal_mask, return_lse=True) # merge_attention(*attention(q, k1, v1), *attention(q, k2, v2)) == attention(q, cat(k1, k2), cat(v1, v2)) def merge_attention(a, lse_a, b, lse_b): max_lse = torch.maximum(lse_a, lse_b) lse_a = torch.exp(lse_a - max_lse) -
Chillee created this gist
Feb 5, 2025 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,27 @@ import torch from torch.nn.attention.flex_attention import create_block_mask, flex_attention torch.set_default_device('cuda') q, k, v = [torch.randn(8, 8, 1024, 64, requires_grad=True) for _ in range(3)] causal_mask = create_block_mask(lambda b, h, q_idx, kv_idx: q_idx >= kv_idx, None, None, 1024, 1024) uncausal_mask = create_block_mask(lambda b, h, q_idx, kv_idx: q_idx < kv_idx, None, None, 1024, 1024) ref_out = flex_attention(q, k, v) causal_out, causal_lse = flex_attention(q, k, v, block_mask=causal_mask, return_lse=True) uncausal_out, uncausal_lse = flex_attention(q, k, v, block_mask=uncausal_mask, return_lse=True) def merge_attention(a, lse_a, b, lse_b): max_lse = torch.maximum(lse_a, lse_b) lse_a = torch.exp(lse_a - max_lse) lse_b = torch.exp(lse_b - max_lse) out = ((a * lse_a[..., None] + b * lse_b[..., None]) / (lse_a + lse_b)[..., None]) return out merge_out = merge_attention(causal_out, causal_lse, uncausal_out, uncausal_lse) assert (ref_out - merge_out).abs().max() < 1e-5 ref_out.sum().backward() ref_q_grad = q.grad q.grad = None merge_out.sum().backward() assert (q.grad - ref_q_grad).abs().max() < 1e-5