Created
June 26, 2020 19:20
-
-
Save riveSunder/1223824a4fb7e6831f20fde3b4871354 to your computer and use it in GitHub Desktop.
Revisions
-
riveSunder created this gist
Jun 26, 2020 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,137 @@ """ Simple MLP demo using [autograd](https://github.com/HIPS/autograd) With l1 and l2 regularization. Depends on autograd and scikit-learn (the latter for the mini digits dataset) pip install autograd scikit-learn """ from autograd import numpy as np from autograd import grad from autograd import elementwise_grad as egrad import sklearn.datasets as datasets import time elu = lambda x: x * (x >= 0.) + (np.exp(x) - 1) * (x < 0.) grad_elu = grad(elu) softmax = lambda x: np.exp(x-np.max(x)) / np.sum(np.exp(x-np.max(x)), axis=1)[:,np.newaxis] get_label = lambda x: 1.*np.argmax(x, axis=1) accuracy = lambda tgt, pred: np.sum(get_label(pred) == get_label(tgt)) / tgt.shape[0] normalize = lambda x: (x-np.mean(x)) / np.std(x) def labels_to_one_hot(tgts): number_classes = np.max(tgts)+1 number_samples = tgts.shape[0] one_hot = np.zeros((number_samples, number_classes)) for ii in range(number_samples): one_hot[ii, tgts[ii]] = 1 return one_hot def mlp_forward(x, weights, activations): for ii in range(len(weights)): x = np.matmul(x, weights[ii]) x = activations[ii](x) return x ce_loss = lambda y_tgts, y_pred: - np.sum(y_tgts * np.log(y_pred)) def get_loss(weights, activations, batch): y_pred = mlp_forward(batch[0], weights, activations) my_loss = ce_loss(batch[1], y_pred) my_loss += 1e-1 * np.sum([np.sum(np.abs(layer**2)) for layer in weights]) my_loss += 1e-2 * np.sum([np.sum(np.abs(layer)) for layer in weights]) return my_loss if __name__ == "__main__": print("loading digits datasets") [xx, tgts] = datasets.load_digits(return_X_y=True) xx = normalize(xx) print("convert labels to one-hot encoding") one_hot = labels_to_one_hot(tgts) # split into training, test, and validation num_val = int(0.1 * xx.shape[0]) np.random.seed(1337) np.random.shuffle(xx) np.random.seed(1337) np.random.shuffle(one_hot) x_val = xx[:num_val,...] x_test = xx[num_val:num_val*2,...] x_train = xx[2*num_val:,...] y_val = one_hot[:num_val,...] y_test = one_hot[num_val:num_val*2,...] y_train = one_hot[2*num_val:,...] # some parameters init_scale = 1e-2 lr = 1e-3 max_epochs = 300 disp_every = 10 batch_size = 128 print("initializing mlp weights") dim_x, dim_y, dim_h = x_train.shape[1], y_train.shape[1], 128 wx2h = init_scale * np.random.randn(dim_x, dim_h) wh2h = init_scale * np.random.randn(dim_h, dim_h) wh2y = init_scale * np.random.randn(dim_h, dim_y) weights = [wx2h, wh2h, wh2y] activations = [elu, elu, softmax] grad_loss = egrad(get_loss) smooth_loss = 300. smooth_acc = 0.0 loss_decay = 0.1 t0 = time.time() for epoch in range(max_epochs): t1 = time.time() for batch_start in range(0, x_train.shape[0]-batch_size,batch_size): my_batch = [x_train[batch_start:batch_start+batch_size],\ y_train[batch_start:batch_start+batch_size]] smooth_loss = (1-loss_decay) * smooth_loss \ + loss_decay * get_loss(weights, activations, my_batch) y_pred = mlp_forward(my_batch[0], weights, activations) smooth_acc = (1-loss_decay) * smooth_acc \ + loss_decay * accuracy(my_batch[1], y_pred) my_grad = grad_loss(weights, activations, my_batch) for params, grads in zip(weights, my_grad): params -= lr * grads if epoch % disp_every == 0: my_batch = [x_val, y_val] y_pred = mlp_forward(x_val, weights, activations) val_loss = ce_loss(y_val, y_pred) val_acc = accuracy(y_val, y_pred) t2 = time.time() print("epoch {}, training loss {:.2e}, train acc: {:.2e}, val loss {:.2e}, val accuracy {:.2e}"\ .format(epoch, smooth_loss, smooth_acc, val_loss, val_acc)) print("total time: {:.2f}, epoch time {:.2f}".format(t2-t0, t2-t1))