Skip to content

Instantly share code, notes, and snippets.

@s3nh
Created January 17, 2024 17:05
Show Gist options
  • Save s3nh/a06f827bc492eb4b667db09d44b922e7 to your computer and use it in GitHub Desktop.
Save s3nh/a06f827bc492eb4b667db09d44b922e7 to your computer and use it in GitHub Desktop.

Revisions

  1. s3nh created this gist Jan 17, 2024.
    336 changes: 336 additions & 0 deletions tensor_mapping.py
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,336 @@
    #Add e5-instruct-mistral layers, so they naming is different than
    # original mistral instruct one

    from __future__ import annotations

    from typing import Sequence

    from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES


    class TensorNameMap:
    mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
    # Token embeddings
    MODEL_TENSOR.TOKEN_EMBD: (
    "gpt_neox.embed_in", # gptneox
    "transformer.wte", # gpt2 gpt-j mpt refact qwen
    "transformer.word_embeddings", # falcon
    "word_embeddings", # bloom
    "model.embed_tokens", # llama-hf
    "tok_embeddings", # llama-pth
    "embeddings.word_embeddings", # bert
    "language_model.embedding.word_embeddings", # persimmon
    "wte", # gpt2
    "transformer.embd.wte",
    "embed_tokens" # phi2
    ),

    # Token type embeddings
    MODEL_TENSOR.TOKEN_TYPES: (
    "embeddings.token_type_embeddings", # bert
    ),

    # Normalization of token embeddings
    MODEL_TENSOR.TOKEN_EMBD_NORM: (
    "word_embeddings_layernorm", # bloom
    ),

    # Position embeddings
    MODEL_TENSOR.POS_EMBD: (
    "transformer.wpe", # gpt2
    "embeddings.position_embeddings", # bert
    "wpe", # gpt2
    ),

    # Output
    MODEL_TENSOR.OUTPUT: (
    "embed_out", # gptneox
    "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen
    "output", # llama-pth bloom
    "word_embeddings_for_head", # persimmon
    "lm_head.linear",
    "weight"# phi2
    ),

    # Output norm
    MODEL_TENSOR.OUTPUT_NORM: (
    "gpt_neox.final_layer_norm", # gptneox
    "transformer.ln_f", # gpt2 gpt-j falcon
    "model.norm", # llama-hf baichuan
    "norm", # llama-pth
    "embeddings.LayerNorm", # bert
    "transformer.norm_f", # mpt
    "ln_f", # refact bloom qwen gpt2
    "language_model.encoder.final_layernorm", # persimmon
    "model.final_layernorm", # persimmon
    "lm_head.ln", # phi2
    ),

    # Rope frequencies
    MODEL_TENSOR.ROPE_FREQS: (
    "rope.freqs", # llama-pth
    ),
    }

    block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
    # Attention norm
    MODEL_TENSOR.ATTN_NORM: (
    "gpt_neox.layers.{bid}.input_layernorm", # gptneox
    "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
    "transformer.blocks.{bid}.norm_1", # mpt
    "transformer.h.{bid}.input_layernorm", # falcon7b
    "h.{bid}.input_layernorm", # bloom
    "transformer.h.{bid}.ln_mlp", # falcon40b
    "model.layers.{bid}.input_layernorm", # llama-hf
    "layers.{bid}.attention_norm", # llama-pth
    "encoder.layer.{bid}.attention.output.LayerNorm", # bert
    "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
    "model.layers.{bid}.ln1", # yi
    "h.{bid}.ln_1", # gpt2
    "transformer.h.{bid}.ln", # phi2
    "model.layers.layers.{bid}.norm", # plamo
    ),

    # Attention norm 2
    MODEL_TENSOR.ATTN_NORM_2: (
    "transformer.h.{bid}.ln_attn", # falcon40b
    ),

    # Attention query-key-value
    MODEL_TENSOR.ATTN_QKV: (
    "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
    "transformer.h.{bid}.attn.c_attn", # gpt2 qwen
    "transformer.blocks.{bid}.attn.Wqkv", # mpt
    "transformer.h.{bid}.self_attention.query_key_value", # falcon
    "h.{bid}.self_attention.query_key_value", # bloom
    "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
    "model.layers.{bid}.self_attn.query_key_value", # persimmon
    "h.{bid}.attn.c_attn", # gpt2
    "transformer.h.{bid}.mixer.Wqkv", # phi2
    ),

    # Attention query
    MODEL_TENSOR.ATTN_Q: (
    "model.layers.{bid}.self_attn.q_proj", # llama-hf
    "layers.{bid}.attention.wq", # llama-pth
    "layers.{bid}.self_attn.q_proj",
    "encoder.layer.{bid}.attention.self.query", # bert
    "transformer.h.{bid}.attn.q_proj", # gpt-j
    "model.layers.layers.{bid}.self_attn.q_proj", # plamo
    ),

    # Attention key
    MODEL_TENSOR.ATTN_K: (
    "model.layers.{bid}.self_attn.k_proj", # llama-hf
    "layers.{bid}.self_attn.k_proj",
    "layers.{bid}.attention.wk", # llama-pth
    "encoder.layer.{bid}.attention.self.key", # bert
    "transformer.h.{bid}.attn.k_proj", # gpt-j
    "model.layers.layers.{bid}.self_attn.k_proj", # plamo
    ),

    # Attention value
    MODEL_TENSOR.ATTN_V: (
    "model.layers.{bid}.self_attn.v_proj", # llama-hf
    "layers.{bid}.self_attn.v_proj",
    "layers.{bid}.attention.wv", # llama-pth
    "encoder.layer.{bid}.attention.self.value", # bert
    "transformer.h.{bid}.attn.v_proj", # gpt-j
    "model.layers.layers.{bid}.self_attn.v_proj", # plamo
    ),

    # Attention output
    MODEL_TENSOR.ATTN_OUT: (
    "gpt_neox.layers.{bid}.attention.dense", # gptneox
    "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
    "transformer.blocks.{bid}.attn.out_proj", # mpt
    "transformer.h.{bid}.self_attention.dense", # falcon
    "h.{bid}.self_attention.dense", # bloom
    "model.layers.{bid}.self_attn.o_proj", # llama-hf,
    "layers.{bid}.self_attn.o_proj",
    "layers.{bid}.attention.wo", # llama-pth
    "encoder.layer.{bid}.attention.output.dense", # bert
    "transformer.h.{bid}.attn.out_proj", # gpt-j
    "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
    "model.layers.{bid}.self_attn.dense", # persimmon
    "layers.{bid}.self_attn.dense",
    "h.{bid}.attn.c_proj", # gpt2
    "transformer.h.{bid}.mixer.out_proj", # phi2
    "model.layers.layers.{bid}.self_attn.o_proj", # plamo
    ),

    # Rotary embeddings
    MODEL_TENSOR.ATTN_ROT_EMBD: (
    "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
    "layers.{bid}.self_attn.rotary_emb.inv_freq",
    "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
    "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
    ),

    # Feed-forward norm
    MODEL_TENSOR.FFN_NORM: (
    "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
    "transformer.h.{bid}.ln_2", # gpt2 refact qwen
    "h.{bid}.post_attention_layernorm", # bloom
    "transformer.blocks.{bid}.norm_2", # mpt
    "model.layers.{bid}.post_attention_layernorm", # llama-hf,
    "layers.{bid}.post_attention_layernorm",
    "layers.{bid}.ffn_norm", # llama-pth
    "encoder.layer.{bid}.output.LayerNorm", # bert
    "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
    "model.layers.{bid}.ln2", # yi
    "h.{bid}.ln_2", # gpt2
    ),

    MODEL_TENSOR.FFN_GATE_INP: (
    "layers.{bid}.feed_forward.gate", # mixtral
    "model.layers.{bid}.block_sparse_moe.gate", # mixtral
    ),

    # Feed-forward up
    MODEL_TENSOR.FFN_UP: (
    "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
    "transformer.h.{bid}.mlp.c_fc", # gpt2
    "transformer.blocks.{bid}.ffn.up_proj", # mpt
    "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
    "h.{bid}.mlp.dense_h_to_4h", # bloom
    "model.layers.{bid}.mlp.up_proj", # llama-hf refact,
    "layers.{bid}.mlp.up_proj",
    "layers.{bid}.feed_forward.w3", # llama-pth
    "encoder.layer.{bid}.intermediate.dense", # bert
    "transformer.h.{bid}.mlp.fc_in", # gpt-j
    "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
    "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
    "transformer.h.{bid}.mlp.w1", # qwen
    "h.{bid}.mlp.c_fc", # gpt2
    "transformer.h.{bid}.mlp.fc1", # phi2
    "model.layers.{bid}.mlp.fc1", # phi2
    "model.layers.layers.{bid}.mlp.up_proj", # plamo
    ),

    MODEL_TENSOR.FFN_UP_EXP: (
    "layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
    "model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
    ),

    # AWQ-activation gate
    MODEL_TENSOR.FFN_ACT: (
    "transformer.blocks.{bid}.ffn.act", # mpt
    ),

    # Feed-forward gate
    MODEL_TENSOR.FFN_GATE: (
    "model.layers.{bid}.mlp.gate_proj", # llama-hf refact,
    "layers.{bid}.mlp.gate_proj",
    "layers.{bid}.feed_forward.w1", # llama-pth
    "transformer.h.{bid}.mlp.w2", # qwen
    "model.layers.layers.{bid}.mlp.gate_proj", # plamo
    ),

    MODEL_TENSOR.FFN_GATE_EXP: (
    "layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
    "model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
    ),

    # Feed-forward down
    MODEL_TENSOR.FFN_DOWN: (
    "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
    "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
    "transformer.blocks.{bid}.ffn.down_proj", # mpt
    "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
    "h.{bid}.mlp.dense_4h_to_h", # bloom
    "model.layers.{bid}.mlp.down_proj", # llama-hf
    "layers.{bid}.mlp.down_proj",
    "layers.{bid}.feed_forward.w2", # llama-pth
    "encoder.layer.{bid}.output.dense", # bert
    "transformer.h.{bid}.mlp.fc_out", # gpt-j
    "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
    "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
    "h.{bid}.mlp.c_proj", # gpt2
    "transformer.h.{bid}.mlp.fc2", # phi2
    "model.layers.{bid}.mlp.fc2", # phi2
    "model.layers.layers.{bid}.mlp.down_proj", # plamo
    ),

    MODEL_TENSOR.FFN_DOWN_EXP: (
    "layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
    "model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
    ),

    MODEL_TENSOR.ATTN_Q_NORM: (
    "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
    "model.layers.{bid}.self_attn.q_layernorm", # persimmon
    ),

    MODEL_TENSOR.ATTN_K_NORM: (
    "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
    "model.layers.{bid}.self_attn.k_layernorm", # persimmon
    ),

    MODEL_TENSOR.ROPE_FREQS: (
    "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
    ),
    }

    mapping: dict[str, tuple[MODEL_TENSOR, str]]

    def __init__(self, arch: MODEL_ARCH, n_blocks: int):
    self.mapping = {}
    for tensor, keys in self.mappings_cfg.items():
    if tensor not in MODEL_TENSORS[arch]:
    continue
    tensor_name = TENSOR_NAMES[tensor]
    self.mapping[tensor_name] = (tensor, tensor_name)
    for key in keys:
    self.mapping[key] = (tensor, tensor_name)
    for bid in range(n_blocks):
    for tensor, keys in self.block_mappings_cfg.items():
    if tensor not in MODEL_TENSORS[arch]:
    continue
    # TODO: make this configurable
    n_experts = 8
    for xid in range(n_experts):
    tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
    self.mapping[tensor_name] = (tensor, tensor_name)
    for key in keys:
    key = key.format(bid = bid, xid = xid)
    self.mapping[key] = (tensor, tensor_name)

    def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
    result = self.mapping.get(key)
    if result is not None:
    return result
    for suffix in try_suffixes:
    if key.endswith(suffix):
    result = self.mapping.get(key[:-len(suffix)])
    if result is not None:
    return result[0], result[1] + suffix
    return None

    def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
    result = self.get_type_and_name(key, try_suffixes = try_suffixes)
    if result is None:
    return None
    return result[1]

    def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
    result = self.get_type_and_name(key, try_suffixes = try_suffixes)
    if result is None:
    return None
    return result[0]

    def __getitem__(self, key: str) -> str:
    try:
    return self.mapping[key][1]
    except KeyError:
    raise KeyError(key)

    def __contains__(self, key: str) -> bool:
    return key in self.mapping

    def __repr__(self) -> str:
    return repr(self.mapping)


    def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
    return TensorNameMap(arch, n_blocks)