Created
March 31, 2017 02:20
-
-
Save sachinruk/bed215437a9f572d407975225d2ba018 to your computer and use it in GitHub Desktop.
Revisions
-
sachinruk created this gist
Mar 31, 2017 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,189 @@ { "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a positive definite matrix" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(100, 100)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A = np.random.randn(100,120)\n", "A = A.dot(A.T)\n", "A.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Implementation of cholesky algorithm from:\n", "\n", "https://en.wikipedia.org/wiki/Cholesky_decomposition#The_Cholesky.E2.80.93Banachiewicz_and_Cholesky.E2.80.93Crout_algorithms" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def cholesky_d(A):\n", " L = np.zeros_like(A)\n", " n = len(L)\n", " for i in range(n):\n", " for j in range(i+1):\n", " if i==j:\n", " val = A[i,i] - np.sum(np.square(L[i,:i]))\n", " # if diagonal values are negative return zero - not throw exception\n", " if val<0:\n", " return 0.0\n", " L[i,i] = np.sqrt(val)\n", " else:\n", " L[i,j] = (A[i,j] - np.sum(L[i,:j]*L[j,:j]))/L[j,j]\n", " \n", " return L" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 2 µs, sys: 1 µs, total: 3 µs\n", "Wall time: 5.01 µs\n" ] } ], "source": [ "%time\n", "L1 = cholesky_d(A)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 2 µs, sys: 1e+03 ns, total: 3 µs\n", "Wall time: 6.2 µs\n" ] } ], "source": [ "%time\n", "L2 = np.linalg.cholesky(A)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Are the values similar?" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.allclose(L1,L2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" }, "latex_envs": { "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 0 } }, "nbformat": 4, "nbformat_minor": 2 }