Created
May 19, 2018 20:06
-
-
Save satra/ca140fe2cb41659b1b9666909df19cf4 to your computer and use it in GitHub Desktop.
Revisions
-
satra created this gist
May 19, 2018 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,39 @@ docker run -it --rm kaczmarj/neurodocker:master generate docker \ --base neurodebian:stretch \ --pkg-manager apt \ --install graphviz tree git-annex-standalone vim \ emacs-nox nano less ncdu tig sed build-essential \ libsm-dev libx11-dev libxt-dev libxext-dev libglu1-mesa \ --freesurfer version=6.0.0-min \ --ants version=b43df4bfc8 method=source cmake_opts='-DBUILD_SHARED_LIBS=ON' make_opts='-j 4'\ --run 'ln -s /usr/lib/x86_64-linux-gnu /usr/lib64' \ --miniconda \ conda_install="python=3.6 pip jupyter cmake mesalib vtk pandas \ matplotlib colormath nipype" \ pip_install="datalad[full] duecredit" \ env_name="simple2" \ activate=true \ --workdir /opt \ --run 'mkdir -p /opt/data && cd /opt/data && \ curl -sSL https://osf.io/download/rh9km/?revision=2 -o templates.zip && \ unzip templates.zip && \ rm -f /opt/data/templates.zip && \ curl -sSL https://osf.io/download/d2cmy/ -o OASIS-TRT-20_jointfusion_DKT31_CMA_labels_in_OASIS-30_v2.nii.gz && \ curl -sSL https://osf.io/download/qz3kx/ -o OASIS-TRT_brains_to_OASIS_Atropos_template.tar.gz && \ tar zxf OASIS-TRT_brains_to_OASIS_Atropos_template.tar.gz && \ rm OASIS-TRT_brains_to_OASIS_Atropos_template.tar.gz && \ curl -sSL https://osf.io/download/dcf94/ -o OASIS-TRT_labels_to_OASIS_Atropos_template.tar.gz && \ tar zxf OASIS-TRT_labels_to_OASIS_Atropos_template.tar.gz && \ rm OASIS-TRT_labels_to_OASIS_Atropos_template.tar.gz' \ --run-bash 'source /opt/miniconda-latest/etc/profile.d/conda.sh && \ conda activate simple2 && \ git clone https://github.com/nipy/mindboggle.git && \ cd /opt/mindboggle && \ git checkout edf95a3 && \ python setup.py install && \ sed -i "s/7.0/8.1/g" vtk_cpp_tools/CMakeLists.txt && \ mkdir /opt/vtk_cpp_tools && \ cd /opt/vtk_cpp_tools && \ cmake /opt/mindboggle/vtk_cpp_tools && \ make' \ --env vtk_cpp_tools=/opt/vtk_cpp_tools > Dockerfile This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,48 @@ from glob import glob import os from nipype import Workflow, MapNode, Node from nipype.interfaces.ants import ApplyTransforms, AntsJointFusion, LabelGeometry from nipype.utils.misc import human_order_sorted T = glob('/data/out/ants_subjects/arno/antsTemplateToSubject*')[::-1] ref = '/data/T1.nii.gz' mask = '/data/out/ants_subjects/arno/antsBrainExtractionMask.nii.gz' T1s = human_order_sorted(glob('/opt/data/OASIS-TRT_brains_to_OASIS_Atropos_template/*.nii.gz')) labels = human_order_sorted(glob('/opt/data/OASIS-TRT_labels_to_OASIS_Atropos_template/*.nii.gz')) thickness = '/data/out/ants_subjects/arno/antsCorticalThickness.nii.gz' N = 20 wf = Workflow('labelflow') transformer = MapNode(ApplyTransforms(), iterfield=['input_image'], name="transformer") transformer.inputs.reference_image = ref transformer.inputs.transforms = T transformer.inputs.input_image = T1s[:N] transformer.inputs.dimension = 3 transformer.inputs.invert_transform_flags = [False, False] transformer_nn = MapNode(ApplyTransforms(), iterfield=['input_image'], name="transformer_nn") transformer_nn.inputs.reference_image = ref transformer_nn.inputs.transforms = T transformer_nn.inputs.dimension = 3 transformer_nn.inputs.invert_transform_flags = [False, False] transformer_nn.inputs.input_image = labels[:N] transformer_nn.inputs.interpolation = 'NearestNeighbor' labeler = Node(AntsJointFusion(), name='labeler') labeler.inputs.dimension = 3 labeler.inputs.target_image = [ref] labeler.inputs.out_label_fusion = 'label.nii.gz' labeler.inputs.mask_image = mask labeler.inputs.num_threads = 8 wf.connect(transformer, 'output_image', labeler, 'atlas_image') wf.connect(transformer_nn, 'output_image', labeler, 'atlas_segmentation_image') tocsv = Node(LabelGeometry(), name='get_measures') tocsv.inputs.intensity_image = thickness wf.connect(labeler, 'out_label_fusion', tocsv, 'label_image') wf.base_dir = os.getcwd() wf.config['monitoring'] = {'enabled': True} wf.run('MultiProc')