Last active
          September 9, 2021 14:00 
        
      - 
      
 - 
        
Save scionoftech/47d8fb458f0a27910e7861e1f01bb631 to your computer and use it in GitHub Desktop.  
Revisions
- 
        
scionoftech revised this gist
Sep 9, 2021 . 1 changed file with 4 additions and 0 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -57,6 +57,10 @@ cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2 # check driver with cuda lspci | grep -i nvidia # install tensorflow 2.3.1 and pytorch 1.7.1 pip install tensorflow==2.3.1 pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html # Test tensorflow_2 import tensorflow as tf print(tf.config.list_physical_devices('GPU'))  - 
        
scionoftech created this gist
Sep 8, 2021 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,71 @@ # Deeplearning Environment Setup for tensorflow_2.3.1 with CUDA 10.1 and cuDNN 7.6.0 ### If you have previous installation remove it first. sudo apt-get purge nvidia* sudo apt remove nvidia-* sudo apt remove --autoremove nvidia-cuda-toolkit sudo rm /etc/apt/sources.list.d/cuda* sudo apt-get autoremove && sudo apt-get autoclean sudo rm -rf /usr/local/cuda* # Get latest nvidia driver apt-cache search nvidia-driver sudo apt install nvidia-driver-470 # check nvidia driver version nvidia-smi # install cuda 10.1 method-1 # https://developer.nvidia.com/cuda-10.1-download-archive-base?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=runfilelocal wget https://developer.nvidia.com/compute/cuda/10.1/Prod/local_installers/cuda_10.1.105_418.39_linux.run # run below command and follow the command-line prompts sudo sh cuda_10.1.105_418.39_linux.run # install cuda 10.1 method-2 # https://developer.nvidia.com/cuda-10.1-download-archive-base?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=deblocal wget https://developer.nvidia.com/compute/cuda/10.1/Prod/local_installers/cuda-repo-ubuntu1804-10-1-local-10.1.105-418.39_1.0-1_amd64.deb sudo dpkg -i cuda-repo-ubuntu1804-10-1-local-10.1.105-418.39_1.0-1_amd64.deb sudo apt-key add /var/cuda-repo-10-1-local-10.1.105-418.39/7fa2af80.pub sudo apt-get update sudo apt-get install cuda # install cuDNN(CUDA® Deep Neural Network library) 7.6.0 version (CUDA 10.1 is compatable with cuDNN 7.5.1 - 7.6.2) # source https://anaconda.org/anaconda/cudnn/files wget https://anaconda.org/anaconda/cudnn/7.6.0/download/linux-64/cudnn-7.6.0-cuda10.1_0.tar.bz2 tar -xvf cudnn-7.6.0-cuda10.1_0.tar.bz2 -C cuda sudo cp cuda/include/cudnn.h /usr/local/cuda/include sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn* echo 'export PATH=/usr/local/cuda-10.1/bin${PATH:+:${PATH}}' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}' >> ~/.bashrc echo 'export CUDA_HOME=/usr/local/cuda' >> ~/.bashrc source ~/.bashrc # test cuDNN cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2 #Should see something like below: #define CUDNN_MAJOR 6 #define CUDNN_MINOR 0 #define CUDNN_PATCHLEVEL 21 -- #define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL) #include "driver_types.h" # check driver with cuda lspci | grep -i nvidia # Test tensorflow_2 import tensorflow as tf print(tf.config.list_physical_devices('GPU')) # install nvidia-docker # first install docker-ce sudo apt-get update sudo apt-get install -y nvidia-docker2 sudo pkill -SIGHUP dockerd # Test environment and to make sure everything is installed correctly sudo docker run --runtime=nvidia --rm nvidia/cuda:10.1-base nvidia-smi