Skip to content

Instantly share code, notes, and snippets.

@sinianyutian
sinianyutian / detection_PC.py
Created October 27, 2020 06:09 — forked from iwatake2222/detection_PC.py
Object detection using MobileNet SSD with tensorflow lite (with and without Edge TPU)
# -*- coding: utf-8 -*-
import cv2
import tensorflow as tf
import numpy as np
# https://www.tensorflow.org/lite/guide/hosted_models
# http://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip
def detect_from_camera():
@sinianyutian
sinianyutian / readme.md
Created April 10, 2018 09:39 — forked from baraldilorenzo/readme.md
VGG-16 pre-trained model for Keras

##VGG16 model for Keras

This is the Keras model of the 16-layer network used by the VGG team in the ILSVRC-2014 competition.

It has been obtained by directly converting the Caffe model provived by the authors.

Details about the network architecture can be found in the following arXiv paper:

Very Deep Convolutional Networks for Large-Scale Image Recognition

K. Simonyan, A. Zisserman

Python版Kaggle教程

Kaggle https://www.kaggle.com/ 是机器学习相关人士获取数据,验证算法的地方。上面有一块是Getting Started,里面有一个First Steps With Julia,旨在教会大家使用Julia语言进行机器学习。在尝试时候发现并不好用,这个教程所使用的Julia版本比较低,有些函数已经有了较大的改变。在纠结了半天Julia之后,决定使用已经比较熟悉的Python重实现了该教程 首先,该教程针对的问题是从谷歌街景的图片中鉴定字母。

谷歌街景字母

这个问题有别于传统的字母识别,因为每个字母的字体和背景都是不同的,该问题的训练集和测试集的下载请前往[数据集][1]。 下面我从Python的角度去完成Kaggle的Julia版教程。当然教程中也会使用到第三方库,有opencv,numpy,pandas和scikit-learn,这里暂时不介绍各个库的安装。 ##图片读取## 首先我们读取需要使用的库