Skip to content

Instantly share code, notes, and snippets.

@sjanulonoks
sjanulonoks / latency.markdown
Created September 28, 2018 21:10 — forked from hellerbarde/latency.markdown
Latency numbers every programmer should know

Latency numbers every programmer should know

L1 cache reference ......................... 0.5 ns
Branch mispredict ............................ 5 ns
L2 cache reference ........................... 7 ns
Mutex lock/unlock ........................... 25 ns
Main memory reference ...................... 100 ns             
Compress 1K bytes with Zippy ............. 3,000 ns  =   3 µs
Send 2K bytes over 1 Gbps network ....... 20,000 ns  =  20 µs
SSD random read ........................ 150,000 ns  = 150 µs

Read 1 MB sequentially from memory ..... 250,000 ns = 250 µs

@sjanulonoks
sjanulonoks / latency.txt
Created September 28, 2018 21:09 — forked from jboner/latency.txt
Latency Numbers Every Programmer Should Know
Latency Comparison Numbers (~2012)
----------------------------------
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps network 10,000 ns 10 us
Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
@sjanulonoks
sjanulonoks / service-checklist.md
Created March 6, 2018 21:34 — forked from acolyer/service-checklist.md
Internet Scale Services Checklist

Internet Scale Services Checklist

A checklist for designing and developing internet scale services, inspired by James Hamilton's 2007 paper "On Desgining and Deploying Internet-Scale Services."

Basic tenets

  • Does the design expect failures to happen regularly and handle them gracefully?
  • Have we kept things as simple as possible?
@sjanulonoks
sjanulonoks / reinvent-2017-youtube.md
Created December 13, 2017 21:41 — forked from stevenringo/reinvent-2017-youtube.md
Links to YouTube recordings of AWS re:Invent 2017 sessions

| Title | Description

Generating Flame Graphs for Apache Spark

Flame graphs are a nifty debugging tool to determine where CPU time is being spent. Using the Java Flight recorder, you can do this for Java processes without adding significant runtime overhead.

When are flame graphs useful?

Shivaram Venkataraman and I have found these flame recordings to be useful for diagnosing coarse-grained performance problems. We started using them at the suggestion of Josh Rosen, who quickly made one for the Spark scheduler when we were talking to him about why the scheduler caps out at a throughput of a few thousand tasks per second. Josh generated a graph similar to the one below, which illustrates that a significant amount of time is spent in serialization (if you click in the top right hand corner and search for "serialize", you can see that 78.6% of the sampled CPU time was spent in serialization). We used this insight to spee