|
|
@@ -0,0 +1,233 @@ |
|
|
import numpy as np |
|
|
from numpy import linalg |
|
|
import cvxopt |
|
|
import cvxopt.solvers |
|
|
|
|
|
def linear_kernel(x1, x2): |
|
|
return np.dot(x1, x2) |
|
|
|
|
|
def polynomial_kernel(x, y, p=3): |
|
|
return (1 + np.dot(x, y)) * p |
|
|
|
|
|
def gaussian_kernel(x, y, sigma=5.0): |
|
|
return np.exp(-linalg.norm(x-y)**2 / (2 * (sigma ** 2))) |
|
|
|
|
|
class SVM(object): |
|
|
|
|
|
def __init__(self, kernel=linear_kernel, C=None): |
|
|
self.kernel = kernel |
|
|
self.C = C |
|
|
if self.C is not None: self.C = float(self.C) |
|
|
|
|
|
def fit(self, X, y): |
|
|
n_samples, n_features = X.shape |
|
|
|
|
|
# Gram matrix |
|
|
K = np.zeros((n_samples, n_samples)) |
|
|
for i in range(n_samples): |
|
|
for j in range(n_samples): |
|
|
K[i,j] = self.kernel(X[i], X[j]) |
|
|
|
|
|
P = cvxopt.matrix(np.outer(y,y) * K) |
|
|
q = cvxopt.matrix(np.ones(n_samples) * -1) |
|
|
A = cvxopt.matrix(y, (1,n_samples)) |
|
|
b = cvxopt.matrix(0.0) |
|
|
|
|
|
if self.C is None: |
|
|
G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1)) |
|
|
h = cvxopt.matrix(np.zeros(n_samples)) |
|
|
else: |
|
|
tmp1 = np.diag(np.ones(n_samples) * -1) |
|
|
tmp2 = np.identity(n_samples) |
|
|
G = cvxopt.matrix(np.vstack((tmp1, tmp2))) |
|
|
tmp1 = np.zeros(n_samples) |
|
|
tmp2 = np.ones(n_samples) * self.C |
|
|
h = cvxopt.matrix(np.hstack((tmp1, tmp2))) |
|
|
|
|
|
# solve QP problem |
|
|
solution = cvxopt.solvers.qp(P, q, G, h, A, b) |
|
|
|
|
|
# Lagrange multipliers |
|
|
a = np.ravel(solution['x']) |
|
|
|
|
|
# Support vectors are non zero lagrange multipliers |
|
|
sv = a > 1e-5 |
|
|
ind = np.arange(len(a))[sv] |
|
|
self.a = a[sv] |
|
|
self.sv = X[sv] |
|
|
self.sv_y = y[sv] |
|
|
print "%d support vectors out of %d points" % (len(self.a), n_samples) |
|
|
|
|
|
# Intercept |
|
|
self.b = 0 |
|
|
for n in range(len(self.a)): |
|
|
self.b += self.sv_y[n] |
|
|
self.b -= np.sum(self.a * self.sv_y * K[ind[n],sv]) |
|
|
self.b /= len(self.a) |
|
|
|
|
|
# Weight vector |
|
|
if self.kernel == linear_kernel: |
|
|
self.w = np.zeros(n_features) |
|
|
for n in range(len(self.a)): |
|
|
self.w += self.a[n] * self.sv_y[n] * self.sv[n] |
|
|
else: |
|
|
self.w = None |
|
|
|
|
|
def project(self, X): |
|
|
if self.w is not None: |
|
|
return np.dot(X, self.w) + self.b |
|
|
else: |
|
|
y_predict = np.zeros(len(X)) |
|
|
for i in range(len(X)): |
|
|
s = 0 |
|
|
for a, sv_y, sv in zip(self.a, self.sv_y, self.sv): |
|
|
s += a * sv_y * self.kernel(X[i], sv) |
|
|
y_predict[i] = s |
|
|
return y_predict + self.b |
|
|
|
|
|
def predict(self, X): |
|
|
return np.sign(self.project(X)) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
import pylab as pl |
|
|
|
|
|
def gen_lin_separable_data(): |
|
|
# generate training data in the 2-d case |
|
|
mean1 = np.array([0, 2]) |
|
|
mean2 = np.array([2, 0]) |
|
|
cov = np.array([[0.8, 0.6], [0.6, 0.8]]) |
|
|
X1 = np.random.multivariate_normal(mean1, cov, 100) |
|
|
y1 = np.ones(len(X1)) |
|
|
X2 = np.random.multivariate_normal(mean2, cov, 100) |
|
|
y2 = np.ones(len(X2)) * -1 |
|
|
return X1, y1, X2, y2 |
|
|
|
|
|
def gen_non_lin_separable_data(): |
|
|
mean1 = [-1, 2] |
|
|
mean2 = [1, -1] |
|
|
mean3 = [4, -4] |
|
|
mean4 = [-4, 4] |
|
|
cov = [[1.0,0.8], [0.8, 1.0]] |
|
|
X1 = np.random.multivariate_normal(mean1, cov, 50) |
|
|
X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50))) |
|
|
y1 = np.ones(len(X1)) |
|
|
X2 = np.random.multivariate_normal(mean2, cov, 50) |
|
|
X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50))) |
|
|
y2 = np.ones(len(X2)) * -1 |
|
|
return X1, y1, X2, y2 |
|
|
|
|
|
def gen_lin_separable_overlap_data(): |
|
|
# generate training data in the 2-d case |
|
|
mean1 = np.array([0, 2]) |
|
|
mean2 = np.array([2, 0]) |
|
|
cov = np.array([[1.5, 1.0], [1.0, 1.5]]) |
|
|
X1 = np.random.multivariate_normal(mean1, cov, 100) |
|
|
y1 = np.ones(len(X1)) |
|
|
X2 = np.random.multivariate_normal(mean2, cov, 100) |
|
|
y2 = np.ones(len(X2)) * -1 |
|
|
return X1, y1, X2, y2 |
|
|
|
|
|
def split_train(X1, y1, X2, y2): |
|
|
X1_train = X1[:90] |
|
|
y1_train = y1[:90] |
|
|
X2_train = X2[:90] |
|
|
y2_train = y2[:90] |
|
|
X_train = np.vstack((X1_train, X2_train)) |
|
|
y_train = np.hstack((y1_train, y2_train)) |
|
|
return X_train, y_train |
|
|
|
|
|
def split_test(X1, y1, X2, y2): |
|
|
X1_test = X1[90:] |
|
|
y1_test = y1[90:] |
|
|
X2_test = X2[90:] |
|
|
y2_test = y2[90:] |
|
|
X_test = np.vstack((X1_test, X2_test)) |
|
|
y_test = np.hstack((y1_test, y2_test)) |
|
|
return X_test, y_test |
|
|
|
|
|
def plot_margin(X1_train, X2_train, clf): |
|
|
def f(x, w, b, c=0): |
|
|
# given x, return y such that [x,y] in on the line |
|
|
# w.x + b = c |
|
|
return (-w[0] * x - b + c) / w[1] |
|
|
|
|
|
pl.plot(X1_train[:,0], X1_train[:,1], "ro") |
|
|
pl.plot(X2_train[:,0], X2_train[:,1], "bo") |
|
|
pl.scatter(clf.sv[:,0], clf.sv[:,1], s=100, c="g") |
|
|
|
|
|
# w.x + b = 0 |
|
|
a0 = -4; a1 = f(a0, clf.w, clf.b) |
|
|
b0 = 4; b1 = f(b0, clf.w, clf.b) |
|
|
pl.plot([a0,b0], [a1,b1], "k") |
|
|
|
|
|
# w.x + b = 1 |
|
|
a0 = -4; a1 = f(a0, clf.w, clf.b, 1) |
|
|
b0 = 4; b1 = f(b0, clf.w, clf.b, 1) |
|
|
pl.plot([a0,b0], [a1,b1], "k--") |
|
|
|
|
|
# w.x + b = -1 |
|
|
a0 = -4; a1 = f(a0, clf.w, clf.b, -1) |
|
|
b0 = 4; b1 = f(b0, clf.w, clf.b, -1) |
|
|
pl.plot([a0,b0], [a1,b1], "k--") |
|
|
|
|
|
pl.axis("tight") |
|
|
pl.show() |
|
|
|
|
|
def plot_contour(X1_train, X2_train, clf): |
|
|
pl.plot(X1_train[:,0], X1_train[:,1], "ro") |
|
|
pl.plot(X2_train[:,0], X2_train[:,1], "bo") |
|
|
pl.scatter(clf.sv[:,0], clf.sv[:,1], s=100, c="g") |
|
|
|
|
|
X1, X2 = np.meshgrid(np.linspace(-6,6,50), np.linspace(-6,6,50)) |
|
|
X = np.array([[x1, x2] for x1, x2 in zip(np.ravel(X1), np.ravel(X2))]) |
|
|
Z = clf.project(X).reshape(X1.shape) |
|
|
pl.contour(X1, X2, Z, [0.0], colors='k', linewidths=1, origin='lower') |
|
|
pl.contour(X1, X2, Z + 1, [0.0], colors='grey', linewidths=1, origin='lower') |
|
|
pl.contour(X1, X2, Z - 1, [0.0], colors='grey', linewidths=1, origin='lower') |
|
|
|
|
|
pl.axis("tight") |
|
|
pl.show() |
|
|
|
|
|
def test_linear(): |
|
|
X1, y1, X2, y2 = gen_lin_separable_data() |
|
|
X_train, y_train = split_train(X1, y1, X2, y2) |
|
|
X_test, y_test = split_test(X1, y1, X2, y2) |
|
|
|
|
|
clf = SVM() |
|
|
clf.fit(X_train, y_train) |
|
|
|
|
|
y_predict = clf.predict(X_test) |
|
|
correct = np.sum(y_predict == y_test) |
|
|
print "%d out of %d predictions correct" % (correct, len(y_predict)) |
|
|
|
|
|
plot_margin(X_train[y_train==1], X_train[y_train==-1], clf) |
|
|
|
|
|
def test_non_linear(): |
|
|
X1, y1, X2, y2 = gen_non_lin_separable_data() |
|
|
X_train, y_train = split_train(X1, y1, X2, y2) |
|
|
X_test, y_test = split_test(X1, y1, X2, y2) |
|
|
|
|
|
clf = SVM(gaussian_kernel) |
|
|
clf.fit(X_train, y_train) |
|
|
|
|
|
y_predict = clf.predict(X_test) |
|
|
correct = np.sum(y_predict == y_test) |
|
|
print "%d out of %d predictions correct" % (correct, len(y_predict)) |
|
|
|
|
|
plot_contour(X_train[y_train==1], X_train[y_train==-1], clf) |
|
|
|
|
|
def test_soft(): |
|
|
X1, y1, X2, y2 = gen_lin_separable_overlap_data() |
|
|
X_train, y_train = split_train(X1, y1, X2, y2) |
|
|
X_test, y_test = split_test(X1, y1, X2, y2) |
|
|
|
|
|
clf = SVM(C=0.1) |
|
|
clf.fit(X_train, y_train) |
|
|
|
|
|
y_predict = clf.predict(X_test) |
|
|
correct = np.sum(y_predict == y_test) |
|
|
print "%d out of %d predictions correct" % (correct, len(y_predict)) |
|
|
|
|
|
plot_contour(X_train[y_train==1], X_train[y_train==-1], clf) |
|
|
|
|
|
test_soft() |