Skip to content

Instantly share code, notes, and snippets.

@snehalnair
Created June 28, 2020 17:05
Show Gist options
  • Select an option

  • Save snehalnair/948a8c8f9decd0af4a206b4fb4a641f9 to your computer and use it in GitHub Desktop.

Select an option

Save snehalnair/948a8c8f9decd0af4a206b4fb4a641f9 to your computer and use it in GitHub Desktop.
def get_bilstm_lstm_model():
model = Sequential()
# Add Embedding layer
model.add(Embedding(input_dim=input_dim, output_dim=output_dim, input_length=input_length))
# Add bidirectional LSTM
model.add(Bidirectional(LSTM(units=output_dim, return_sequences=True, dropout=0.2, recurrent_dropout=0.2), merge_mode = 'concat'))
# Add LSTM
model.add(LSTM(units=output_dim, return_sequences=True, dropout=0.5, recurrent_dropout=0.5))
# Add timeDistributed Layer
model.add(TimeDistributed(Dense(n_tags, activation="relu")))
#Optimiser
# adam = k.optimizers.Adam(lr=0.0005, beta_1=0.9, beta_2=0.999)
# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
return model
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment