@@ -0,0 +1,179 @@
// Ported from Stefan Gustavson's java implementation
// http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
// Read Stefan's excellent paper for details on how this code works.
//
// Sean McCullough banksean@gmail .com
/**
* You can pass in a random number generator object if you like.
* It is assumed to have a random() method.
*/
var SimplexNoise = function ( r ) {
if ( r == undefined ) r = Math ;
this . grad3 = [ [ 1 , 1 , 0 ] , [ - 1 , 1 , 0 ] , [ 1 , - 1 , 0 ] , [ - 1 , - 1 , 0 ] ,
[ 1 , 0 , 1 ] , [ - 1 , 0 , 1 ] , [ 1 , 0 , - 1 ] , [ - 1 , 0 , - 1 ] ,
[ 0 , 1 , 1 ] , [ 0 , - 1 , 1 ] , [ 0 , 1 , - 1 ] , [ 0 , - 1 , - 1 ] ] ;
this . p = [ ] ;
for ( var i = 0 ; i < 256 ; i ++ ) {
this . p [ i ] = Math . floor ( r . random ( ) * 256 ) ;
}
// To remove the need for index wrapping, double the permutation table length
this . perm = [ ] ;
for ( var i = 0 ; i < 512 ; i ++ ) {
this . perm [ i ] = this . p [ i & 255 ] ;
}
// A lookup table to traverse the simplex around a given point in 4D.
// Details can be found where this table is used, in the 4D noise method.
this . simplex = [
[ 0 , 1 , 2 , 3 ] , [ 0 , 1 , 3 , 2 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 2 , 3 , 1 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 1 , 2 , 3 , 0 ] ,
[ 0 , 2 , 1 , 3 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 3 , 1 , 2 ] , [ 0 , 3 , 2 , 1 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 1 , 3 , 2 , 0 ] ,
[ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] ,
[ 1 , 2 , 0 , 3 ] , [ 0 , 0 , 0 , 0 ] , [ 1 , 3 , 0 , 2 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 2 , 3 , 0 , 1 ] , [ 2 , 3 , 1 , 0 ] ,
[ 1 , 0 , 2 , 3 ] , [ 1 , 0 , 3 , 2 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 2 , 0 , 3 , 1 ] , [ 0 , 0 , 0 , 0 ] , [ 2 , 1 , 3 , 0 ] ,
[ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] ,
[ 2 , 0 , 1 , 3 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 3 , 0 , 1 , 2 ] , [ 3 , 0 , 2 , 1 ] , [ 0 , 0 , 0 , 0 ] , [ 3 , 1 , 2 , 0 ] ,
[ 2 , 1 , 0 , 3 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 3 , 1 , 0 , 2 ] , [ 0 , 0 , 0 , 0 ] , [ 3 , 2 , 0 , 1 ] , [ 3 , 2 , 1 , 0 ] ] ;
} ;
SimplexNoise . prototype . dot = function ( g , x , y ) {
return g [ 0 ] * x + g [ 1 ] * y ;
} ;
SimplexNoise . prototype . noise = function ( xin , yin ) {
var n0 , n1 , n2 ; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
var F2 = 0.5 * ( Math . sqrt ( 3.0 ) - 1.0 ) ;
var s = ( xin + yin ) * F2 ; // Hairy factor for 2D
var i = Math . floor ( xin + s ) ;
var j = Math . floor ( yin + s ) ;
var G2 = ( 3.0 - Math . sqrt ( 3.0 ) ) / 6.0 ;
var t = ( i + j ) * G2 ;
var X0 = i - t ; // Unskew the cell origin back to (x,y) space
var Y0 = j - t ;
var x0 = xin - X0 ; // The x,y distances from the cell origin
var y0 = yin - Y0 ;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
var i1 , j1 ; // Offsets for second (middle) corner of simplex in (i,j) coords
if ( x0 > y0 ) { i1 = 1 ; j1 = 0 ; } // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else { i1 = 0 ; j1 = 1 ; } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
var x1 = x0 - i1 + G2 ; // Offsets for middle corner in (x,y) unskewed coords
var y1 = y0 - j1 + G2 ;
var x2 = x0 - 1.0 + 2.0 * G2 ; // Offsets for last corner in (x,y) unskewed coords
var y2 = y0 - 1.0 + 2.0 * G2 ;
// Work out the hashed gradient indices of the three simplex corners
var ii = i & 255 ;
var jj = j & 255 ;
var gi0 = this . perm [ ii + this . perm [ jj ] ] % 12 ;
var gi1 = this . perm [ ii + i1 + this . perm [ jj + j1 ] ] % 12 ;
var gi2 = this . perm [ ii + 1 + this . perm [ jj + 1 ] ] % 12 ;
// Calculate the contribution from the three corners
var t0 = 0.5 - x0 * x0 - y0 * y0 ;
if ( t0 < 0 ) n0 = 0.0 ;
else {
t0 *= t0 ;
n0 = t0 * t0 * this . dot ( this . grad3 [ gi0 ] , x0 , y0 ) ; // (x,y) of grad3 used for 2D gradient
}
var t1 = 0.5 - x1 * x1 - y1 * y1 ;
if ( t1 < 0 ) n1 = 0.0 ;
else {
t1 *= t1 ;
n1 = t1 * t1 * this . dot ( this . grad3 [ gi1 ] , x1 , y1 ) ;
}
var t2 = 0.5 - x2 * x2 - y2 * y2 ;
if ( t2 < 0 ) n2 = 0.0 ;
else {
t2 *= t2 ;
n2 = t2 * t2 * this . dot ( this . grad3 [ gi2 ] , x2 , y2 ) ;
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 70.0 * ( n0 + n1 + n2 ) ;
} ;
// 3D simplex noise
SimplexNoise . prototype . noise3d = function ( xin , yin , zin ) {
var n0 , n1 , n2 , n3 ; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
var F3 = 1.0 / 3.0 ;
var s = ( xin + yin + zin ) * F3 ; // Very nice and simple skew factor for 3D
var i = Math . floor ( xin + s ) ;
var j = Math . floor ( yin + s ) ;
var k = Math . floor ( zin + s ) ;
var G3 = 1.0 / 6.0 ; // Very nice and simple unskew factor, too
var t = ( i + j + k ) * G3 ;
var X0 = i - t ; // Unskew the cell origin back to (x,y,z) space
var Y0 = j - t ;
var Z0 = k - t ;
var x0 = xin - X0 ; // The x,y,z distances from the cell origin
var y0 = yin - Y0 ;
var z0 = zin - Z0 ;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
var i1 , j1 , k1 ; // Offsets for second corner of simplex in (i,j,k) coords
var i2 , j2 , k2 ; // Offsets for third corner of simplex in (i,j,k) coords
if ( x0 >= y0 ) {
if ( y0 >= z0 )
{ i1 = 1 ; j1 = 0 ; k1 = 0 ; i2 = 1 ; j2 = 1 ; k2 = 0 ; } // X Y Z order
else if ( x0 >= z0 ) { i1 = 1 ; j1 = 0 ; k1 = 0 ; i2 = 1 ; j2 = 0 ; k2 = 1 ; } // X Z Y order
else { i1 = 0 ; j1 = 0 ; k1 = 1 ; i2 = 1 ; j2 = 0 ; k2 = 1 ; } // Z X Y order
}
else { // x0<y0
if ( y0 < z0 ) { i1 = 0 ; j1 = 0 ; k1 = 1 ; i2 = 0 ; j2 = 1 ; k2 = 1 ; } // Z Y X order
else if ( x0 < z0 ) { i1 = 0 ; j1 = 1 ; k1 = 0 ; i2 = 0 ; j2 = 1 ; k2 = 1 ; } // Y Z X order
else { i1 = 0 ; j1 = 1 ; k1 = 0 ; i2 = 1 ; j2 = 1 ; k2 = 0 ; } // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
var x1 = x0 - i1 + G3 ; // Offsets for second corner in (x,y,z) coords
var y1 = y0 - j1 + G3 ;
var z1 = z0 - k1 + G3 ;
var x2 = x0 - i2 + 2.0 * G3 ; // Offsets for third corner in (x,y,z) coords
var y2 = y0 - j2 + 2.0 * G3 ;
var z2 = z0 - k2 + 2.0 * G3 ;
var x3 = x0 - 1.0 + 3.0 * G3 ; // Offsets for last corner in (x,y,z) coords
var y3 = y0 - 1.0 + 3.0 * G3 ;
var z3 = z0 - 1.0 + 3.0 * G3 ;
// Work out the hashed gradient indices of the four simplex corners
var ii = i & 255 ;
var jj = j & 255 ;
var kk = k & 255 ;
var gi0 = this . perm [ ii + this . perm [ jj + this . perm [ kk ] ] ] % 12 ;
var gi1 = this . perm [ ii + i1 + this . perm [ jj + j1 + this . perm [ kk + k1 ] ] ] % 12 ;
var gi2 = this . perm [ ii + i2 + this . perm [ jj + j2 + this . perm [ kk + k2 ] ] ] % 12 ;
var gi3 = this . perm [ ii + 1 + this . perm [ jj + 1 + this . perm [ kk + 1 ] ] ] % 12 ;
// Calculate the contribution from the four corners
var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 ;
if ( t0 < 0 ) n0 = 0.0 ;
else {
t0 *= t0 ;
n0 = t0 * t0 * this . dot ( this . grad3 [ gi0 ] , x0 , y0 , z0 ) ;
}
var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 ;
if ( t1 < 0 ) n1 = 0.0 ;
else {
t1 *= t1 ;
n1 = t1 * t1 * this . dot ( this . grad3 [ gi1 ] , x1 , y1 , z1 ) ;
}
var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 ;
if ( t2 < 0 ) n2 = 0.0 ;
else {
t2 *= t2 ;
n2 = t2 * t2 * this . dot ( this . grad3 [ gi2 ] , x2 , y2 , z2 ) ;
}
var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 ;
if ( t3 < 0 ) n3 = 0.0 ;
else {
t3 *= t3 ;
n3 = t3 * t3 * this . dot ( this . grad3 [ gi3 ] , x3 , y3 , z3 ) ;
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0 * ( n0 + n1 + n2 + n3 ) ;
} ;