Created
November 24, 2016 15:41
-
-
Save souravsingh/c48303637f476f4010c03802104d8f06 to your computer and use it in GitHub Desktop.
Revisions
-
souravsingh created this gist
Nov 24, 2016 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,894 @@ · Running 32 total benchmarks (1 commits * 1 environments * 32 benchmarks) [ 0.00%] ·· Building for existing-py_home_sourav_miniconda2_bin_python [ 0.00%] ·· Benchmarking existing-py_home_sourav_miniconda2_bin_python [ 3.12%] ··· Running sparse.Arithmetic.time_arithmetic ok [ 3.12%] ···· ======== ==== ========= ========= ========== ========= -- op ------------- ---------------------------------------- format XY __add__ __sub__ multiply __mul__ ======== ==== ========= ========= ========== ========= csr AA 2.93ms 2.74ms 2.98ms 10.96ms csr AB 5.54ms 5.52ms 6.37ms 22.66ms csr BA 6.39ms 5.72ms 6.41ms 24.70ms csr BB 6.75ms 6.00ms 6.86ms 56.07ms ======== ==== ========= ========= ========== ========= [ 6.25%] ··· Running sparse.Construction.time_construction ok [ 6.25%] ···· ============ ========== ========== -- format ------------ --------------------- matrix lil dok ============ ========== ========== Empty 5.52ms 25.64μs Identity 86.33ms 365.98ms Poisson5pt 412.62ms 1.92s ============ ========== ========== [ 9.38%] ··· Running sparse.Conversion.time_conversion ok [ 9.38%] ···· ============= ========== ========== ========== ========== ========== ========== -- to_format ------------- ----------------------------------------------------------------- from_format csr csc coo dia lil dok ============= ========== ========== ========== ========== ========== ========== csr 530.77ns 346.32μs 469.19μs 9.72ms 20.94ms 37.88ms csc 329.55μs 518.22ns 501.47μs 10.28ms 21.20ms 39.18ms coo 486.90μs 493.18μs 514.17ns 1.96ms 22.72ms 31.26ms dia 2.13ms 1.31ms 1.57ms 514.13ns 23.76ms 32.21ms lil 12.02ms 11.19ms 12.67ms 22.02ms 513.02ns 49.22ms dok 54.31ms 52.92ms 51.46ms 55.73ms 71.79ms 517.31ns ============= ========== ========== ========== ========== ========== ========== [ 12.50%] ··· Running sparse.Diagonal.time_diagonal ok [ 12.50%] ···· ========= ========== ========== ========== ========= ========== ======== -- format --------- -------------------------------------------------------------- density csr csc coo lil dok dia ========= ========== ========== ========== ========= ========== ======== 0.01 24.31μs 24.63μs 61.26μs 1.53ms 6.41ms 9.18μs 0.1 108.18μs 97.14μs 222.05μs 14.29ms 104.92ms 9.59μs 0.5 420.26μs 423.36μs 1.03ms 64.06ms n/a 9.79μs ========= ========== ========== ========== ========= ========== ======== [ 12.50%] ····· For parameters: 0.01, 'dia' /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1801 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1810 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1792 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) For parameters: 0.1, 'dia' /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1982 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1980 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1981 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) For parameters: 0.5, 'dia' /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1998 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1997 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) [ 15.62%] ··· Running sparse.Getset.time_fancy_getitem ok [ 15.62%] ···· ======= ================== ========== ========== ========== ========== -- format -------------------------- ------------------------------------------- N sparsity pattern csr csc lil dok ======= ================== ========== ========== ========== ========== 1 different 36.22μs 123.95μs 5.56μs 16.46μs 1 same 37.36μs 123.40μs 5.86μs 16.38μs 10 different 93.99μs 185.18μs 101.75μs 110.73μs 10 same 95.12μs 182.48μs 98.49μs 108.57μs 100 different 97.03μs 183.73μs 101.81μs 185.72μs 100 same 95.45μs 182.98μs 100.37μs 187.69μs 1000 different 109.26μs 198.06μs 125.97μs n/a 1000 same 109.13μs 193.32μs 127.36μs n/a 10000 different 191.02μs 281.38μs 347.88μs n/a 10000 same 193.88μs 284.41μs 376.56μs n/a ======= ================== ========== ========== ========== ========== [ 18.75%] ··· Running sparse.Getset.track_fancy_setitem ok [ 18.75%] ···· ======= ================== ========== ========== ========== ========== -- format -------------------------- ------------------------------------------- N sparsity pattern csr csc lil dok ======= ================== ========== ========== ========== ========== 1 different 380.04μs 367.88μs 19.07μs 17.88μs 1 same 123.02μs 115.87μs 6.39μs 16.93μs 10 different 553.85μs 539.78μs 116.11μs 113.01μs 10 same 118.02μs 120.88μs 85.83μs 113.01μs 100 different 2.15ms 2.22ms 128.03μs 136.85μs 100 same 120.88μs 120.88μs 92.03μs 141.86μs 1000 different 12.80ms 12.87ms 248.19μs n/a 1000 same 146.87μs 150.20μs 171.90μs n/a 10000 different 23.40ms 23.00ms 1.87ms n/a 10000 same 564.10μs 581.98μs 1.37ms n/a ======= ================== ========== ========== ========== ========== [ 21.88%] ··· Running sparse.Matmul.time_large failed [ 21.88%] ····· Traceback (most recent call last): File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 795, in <module> commands[mode](args) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 766, in main_run skip = benchmark.do_setup() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 499, in do_setup result = Benchmark.do_setup(self) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 434, in do_setup setup(*self._current_params) File "/home/sourav/scipy/benchmarks/benchmarks/sparse.py", line 231, in setup matrix2 = lil_matrix(zeros((H2, W2))) MemoryError [ 25.00%] ··· Running sparse.Matvec.time_matvec ok [ 25.00%] ···· ============ ========== ========== ========== ========== ========= ========= ========= -- format ------------ ------------------------------------------------------------------------- matrix dia csr csc dok lil coo bsr ============ ========== ========== ========== ========== ========= ========= ========= Identity 25.77μs 41.00μs 38.44μs n/a n/a 33.80μs 42.95μs Poisson5pt 674.60μs 896.62μs 989.46μs 359.54ms 91.60ms 1.12ms 1.20ms Block2x2 n/a 1.01ms n/a n/a n/a n/a 1.09ms Block3x3 n/a 723.26μs n/a n/a n/a n/a 1.02ms ============ ========== ========== ========== ========== ========= ========= ========= [ 28.12%] ··· Running sparse.Matvec.time_matvec_inplace_1_0 ok [ 28.12%] ···· ============ ========== ========== ========== ======== ======= ========= ========== -- format ------------ ---------------------------------------------------------------------- matrix dia csr csc dok lil coo bsr ============ ========== ========== ========== ======== ======= ========= ========== Identity 18.10μs 43.09μs 33.71μs n/a n/a 26.34μs 27.76μs Poisson5pt 615.61μs 823.72μs 967.02μs 16.77s 2.54s 1.05ms 815.20μs Block2x2 n/a 646.27μs n/a n/a n/a n/a 979.13μs Block3x3 n/a 597.64μs n/a n/a n/a n/a 701.90μs ============ ========== ========== ========== ======== ======= ========= ========== [ 31.25%] ··· Running sparse.Matvec.time_matvec_inplace_1_1 ok [ 31.25%] ···· ============ ========== ========== ========== ======== ======= ========= ========== -- format ------------ ---------------------------------------------------------------------- matrix dia csr csc dok lil coo bsr ============ ========== ========== ========== ======== ======= ========= ========== Identity 14.17μs 30.56μs 28.34μs n/a n/a 23.63μs 31.78μs Poisson5pt 605.70μs 848.28μs 952.88μs 17.11s 2.85s 1.10ms 963.01μs Block2x2 n/a 735.96μs n/a n/a n/a n/a 971.03μs Block3x3 n/a 714.06μs n/a n/a n/a n/a 723.88μs ============ ========== ========== ========== ======== ======= ========= ========== [ 34.38%] ··· Running sparse.Matvec.time_matvec_inplace_2_3 ok [ 34.38%] ···· ============ ========== ========== ========= ======== ======= ========= ========== -- format ------------ --------------------------------------------------------------------- matrix dia csr csc dok lil coo bsr ============ ========== ========== ========= ======== ======= ========= ========== Identity 14.58μs 31.12μs 32.77μs n/a n/a 28.70μs 32.28μs Poisson5pt 639.34μs 848.85μs 1.02ms 16.42s 2.57s 1.03ms 836.54μs Block2x2 n/a 660.61μs n/a n/a n/a n/a 983.76μs Block3x3 n/a 631.31μs n/a n/a n/a n/a 706.08μs ============ ========== ========== ========= ======== ======= ========= ========== [ 37.50%] ··· Running sparse.Matvecs.time_matvecs ok [ 37.50%] ···· ======== ======== format -------- -------- csr 6.15ms csc 8.32ms bsr 7.56ms ======== ======== [ 40.62%] ··· Running sparse.Matvecs.time_matvecs_inplace_1_0 failed [ 40.62%] ···· ======== ======== format -------- -------- csr failed csc failed bsr failed ======== ======== [ 40.62%] ····· For parameters: 'csr' Traceback (most recent call last): File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 795, in <module> commands[mode](args) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 772, in main_run result = benchmark.do_run() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 456, in do_run return self.run(*self._current_params) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 531, in run timing = timer.timeit(number) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 202, in timeit timing = self.inner(it, self.timer) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 100, in inner _func() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 512, in <lambda> func = lambda: self.func(*param) File "/home/sourav/scipy/benchmarks/benchmarks/sparse.py", line 209, in time_matvecs_inplace_1_0 A = self.matrices[fmt] AttributeError: 'Matvecs' object has no attribute 'matrices' For parameters: 'csc' Traceback (most recent call last): File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 795, in <module> commands[mode](args) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 772, in main_run result = benchmark.do_run() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 456, in do_run return self.run(*self._current_params) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 531, in run timing = timer.timeit(number) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 202, in timeit timing = self.inner(it, self.timer) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 100, in inner _func() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 512, in <lambda> func = lambda: self.func(*param) File "/home/sourav/scipy/benchmarks/benchmarks/sparse.py", line 209, in time_matvecs_inplace_1_0 A = self.matrices[fmt] AttributeError: 'Matvecs' object has no attribute 'matrices' For parameters: 'bsr' Traceback (most recent call last): File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 795, in <module> commands[mode](args) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 772, in main_run result = benchmark.do_run() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 456, in do_run return self.run(*self._current_params) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 531, in run timing = timer.timeit(number) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 202, in timeit timing = self.inner(it, self.timer) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 100, in inner _func() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 512, in <lambda> func = lambda: self.func(*param) File "/home/sourav/scipy/benchmarks/benchmarks/sparse.py", line 209, in time_matvecs_inplace_1_0 A = self.matrices[fmt] AttributeError: 'Matvecs' object has no attribute 'matrices' [ 43.75%] ··· Running sparse.Matvecs.time_matvecs_inplace_1_1 failed [ 43.75%] ···· ======== ======== format -------- -------- csr failed csc failed bsr failed ======== ======== [ 43.75%] ····· For parameters: 'csr' Traceback (most recent call last): File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 795, in <module> commands[mode](args) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 772, in main_run result = benchmark.do_run() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 456, in do_run return self.run(*self._current_params) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 531, in run timing = timer.timeit(number) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 202, in timeit timing = self.inner(it, self.timer) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 100, in inner _func() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 512, in <lambda> func = lambda: self.func(*param) File "/home/sourav/scipy/benchmarks/benchmarks/sparse.py", line 213, in time_matvecs_inplace_1_1 A = self.matrices[fmt] AttributeError: 'Matvecs' object has no attribute 'matrices' For parameters: 'csc' Traceback (most recent call last): File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 795, in <module> commands[mode](args) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 772, in main_run result = benchmark.do_run() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 456, in do_run return self.run(*self._current_params) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 531, in run timing = timer.timeit(number) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 202, in timeit timing = self.inner(it, self.timer) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 100, in inner _func() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 512, in <lambda> func = lambda: self.func(*param) File "/home/sourav/scipy/benchmarks/benchmarks/sparse.py", line 213, in time_matvecs_inplace_1_1 A = self.matrices[fmt] AttributeError: 'Matvecs' object has no attribute 'matrices' For parameters: 'bsr' Traceback (most recent call last): File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 795, in <module> commands[mode](args) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 772, in main_run result = benchmark.do_run() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 456, in do_run return self.run(*self._current_params) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 531, in run timing = timer.timeit(number) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 202, in timeit timing = self.inner(it, self.timer) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 100, in inner _func() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 512, in <lambda> func = lambda: self.func(*param) File "/home/sourav/scipy/benchmarks/benchmarks/sparse.py", line 213, in time_matvecs_inplace_1_1 A = self.matrices[fmt] AttributeError: 'Matvecs' object has no attribute 'matrices' [ 46.88%] ··· Running sparse.Matvecs.time_matvecs_inplace_2_3 failed [ 46.88%] ···· ======== ======== format -------- -------- csr failed csc failed bsr failed ======== ======== [ 46.88%] ····· For parameters: 'csr' Traceback (most recent call last): File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 795, in <module> commands[mode](args) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 772, in main_run result = benchmark.do_run() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 456, in do_run return self.run(*self._current_params) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 531, in run timing = timer.timeit(number) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 202, in timeit timing = self.inner(it, self.timer) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 100, in inner _func() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 512, in <lambda> func = lambda: self.func(*param) File "/home/sourav/scipy/benchmarks/benchmarks/sparse.py", line 217, in time_matvecs_inplace_2_3 A = self.matrices[fmt] AttributeError: 'Matvecs' object has no attribute 'matrices' For parameters: 'csc' Traceback (most recent call last): File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 795, in <module> commands[mode](args) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 772, in main_run result = benchmark.do_run() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 456, in do_run return self.run(*self._current_params) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 531, in run timing = timer.timeit(number) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 202, in timeit timing = self.inner(it, self.timer) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 100, in inner _func() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 512, in <lambda> func = lambda: self.func(*param) File "/home/sourav/scipy/benchmarks/benchmarks/sparse.py", line 217, in time_matvecs_inplace_2_3 A = self.matrices[fmt] AttributeError: 'Matvecs' object has no attribute 'matrices' For parameters: 'bsr' Traceback (most recent call last): File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 795, in <module> commands[mode](args) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 772, in main_run result = benchmark.do_run() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 456, in do_run return self.run(*self._current_params) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 531, in run timing = timer.timeit(number) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 202, in timeit timing = self.inner(it, self.timer) File "/home/sourav/miniconda2/lib/python2.7/timeit.py", line 100, in inner _func() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 512, in <lambda> func = lambda: self.func(*param) File "/home/sourav/scipy/benchmarks/benchmarks/sparse.py", line 217, in time_matvecs_inplace_2_3 A = self.matrices[fmt] AttributeError: 'Matvecs' object has no attribute 'matrices' [ 50.00%] ··· Running sparse.NullSlice.time_10000_rows 3/6 failed [ 50.00%] ···· ========= ======== ======== ========= -- format --------- --------------------------- density csr csc lil ========= ======== ======== ========= 0.05 failed failed failed 0.01 1.39ms 8.24ms 19.16ms ========= ======== ======== ========= [ 50.00%] ····· For parameters: 0.05, 'csr' asv: benchmark timed out (timeout 60.0s) For parameters: 0.05, 'csc' asv: benchmark timed out (timeout 60.0s) For parameters: 0.05, 'lil' Traceback (most recent call last): File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 795, in <module> commands[mode](args) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 766, in main_run skip = benchmark.do_setup() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 499, in do_setup result = Benchmark.do_setup(self) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 434, in do_setup setup(*self._current_params) File "/home/sourav/scipy/benchmarks/benchmarks/sparse.py", line 370, in setup self.X = sparse.rand(n, k, format=format, density=density) File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/construct.py", line 795, in rand return random(m, n, density, format, dtype, random_state) File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/construct.py", line 768, in random return coo_matrix((vals, (i, j)), shape=(m, n)).asformat(format) File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/base.py", line 254, in asformat return getattr(self, 'to' + format)() File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/base.py", line 758, in tolil return self.tocsr(copy=False).tolil(copy=copy) File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/csr.py", line 157, in tolil data[n] = dat[start:end].tolist() MemoryError [ 53.12%] ··· Running sparse.NullSlice.time_100_cols 3/6 failed [ 53.12%] ···· ========= ======== ======== ========== -- format --------- ---------------------------- density csr csc lil ========= ======== ======== ========== 0.05 failed failed failed 0.01 8.88ms 2.58ms 582.52ms ========= ======== ======== ========== [ 53.12%] ····· For parameters: 0.05, 'csr' asv: benchmark timed out (timeout 60.0s) For parameters: 0.05, 'csc' asv: benchmark timed out (timeout 60.0s) For parameters: 0.05, 'lil' Traceback (most recent call last): File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 795, in <module> commands[mode](args) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 766, in main_run skip = benchmark.do_setup() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 499, in do_setup result = Benchmark.do_setup(self) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 434, in do_setup setup(*self._current_params) File "/home/sourav/scipy/benchmarks/benchmarks/sparse.py", line 370, in setup self.X = sparse.rand(n, k, format=format, density=density) File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/construct.py", line 795, in rand return random(m, n, density, format, dtype, random_state) File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/construct.py", line 768, in random return coo_matrix((vals, (i, j)), shape=(m, n)).asformat(format) File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/base.py", line 254, in asformat return getattr(self, 'to' + format)() File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/base.py", line 758, in tolil return self.tocsr(copy=False).tolil(copy=copy) File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/csr.py", line 157, in tolil data[n] = dat[start:end].tolist() MemoryError [ 56.25%] ··· Running sparse.NullSlice.time_3_cols 3/6 failed [ 56.25%] ···· ========= ======== ========== ========== -- format --------- ------------------------------ density csr csc lil ========= ======== ========== ========== 0.05 failed failed failed 0.01 6.82ms 676.19μs 112.40ms ========= ======== ========== ========== [ 56.25%] ····· For parameters: 0.05, 'csr' asv: benchmark timed out (timeout 60.0s) For parameters: 0.05, 'csc' asv: benchmark timed out (timeout 60.0s) For parameters: 0.05, 'lil' Traceback (most recent call last): File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 795, in <module> commands[mode](args) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 766, in main_run skip = benchmark.do_setup() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 499, in do_setup result = Benchmark.do_setup(self) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 434, in do_setup setup(*self._current_params) File "/home/sourav/scipy/benchmarks/benchmarks/sparse.py", line 370, in setup self.X = sparse.rand(n, k, format=format, density=density) File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/construct.py", line 795, in rand return random(m, n, density, format, dtype, random_state) File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/construct.py", line 768, in random return coo_matrix((vals, (i, j)), shape=(m, n)).asformat(format) File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/base.py", line 254, in asformat return getattr(self, 'to' + format)() File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/base.py", line 758, in tolil return self.tocsr(copy=False).tolil(copy=copy) File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/csr.py", line 157, in tolil data[n] = dat[start:end].tolist() MemoryError [ 59.38%] ··· Running sparse.NullSlice.time_3_rows 3/6 failed [ 59.38%] ···· ========= ========== ======== ========= -- format --------- ----------------------------- density csr csc lil ========= ========== ======== ========= 0.05 failed failed failed 0.01 351.20μs 6.01ms 84.90μs ========= ========== ======== ========= [ 59.38%] ····· For parameters: 0.05, 'csr' asv: benchmark timed out (timeout 60.0s) For parameters: 0.05, 'csc' asv: benchmark timed out (timeout 60.0s) For parameters: 0.05, 'lil' Traceback (most recent call last): File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 795, in <module> commands[mode](args) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 766, in main_run skip = benchmark.do_setup() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 499, in do_setup result = Benchmark.do_setup(self) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 434, in do_setup setup(*self._current_params) File "/home/sourav/scipy/benchmarks/benchmarks/sparse.py", line 370, in setup self.X = sparse.rand(n, k, format=format, density=density) File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/construct.py", line 795, in rand return random(m, n, density, format, dtype, random_state) File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/construct.py", line 768, in random return coo_matrix((vals, (i, j)), shape=(m, n)).asformat(format) File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/base.py", line 254, in asformat return getattr(self, 'to' + format)() File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/base.py", line 758, in tolil return self.tocsr(copy=False).tolil(copy=copy) File "/home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/csr.py", line 157, in tolil data[n] = dat[start:end].tolist() MemoryError [ 62.50%] ··· Running sparse.Sort.time_sort ok [ 62.50%] ···· ========= ========= matrix --------- --------- Rand10 1.11μs Rand25 1.07μs Rand50 1.07μs Rand100 1.07μs Rand200 33.72ms ========= ========= [ 65.62%] ··· Running sparse.Sum.time_sum ok [ 65.62%] ···· ========= ========== ========== ========== ========= ========= ======== -- format --------- ------------------------------------------------------------- density csr csc coo lil dok dia ========= ========== ========== ========== ========= ========= ======== 0.01 107.57μs 103.74μs 84.05μs 1.59ms 6.79ms 1.21ms 0.1 201.88μs 246.78μs 237.08μs 14.71ms 73.77ms 1.27ms 0.5 816.41μs 1.01ms 1.08ms 64.26ms n/a 1.53ms ========= ========== ========== ========== ========= ========= ======== [ 65.62%] ····· For parameters: 0.01, 'dia' /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1801 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1810 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1792 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) For parameters: 0.1, 'dia' /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1982 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1980 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1981 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) For parameters: 0.5, 'dia' /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1998 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1997 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) [ 68.75%] ··· Running sparse.Sum.time_sum_axis0 ok [ 68.75%] ···· ========= ========== ========== ========== ========== ========== ========= -- format --------- ---------------------------------------------------------------- density csr csc coo lil dok dia ========= ========== ========== ========== ========== ========== ========= 0.01 278.10μs 96.58μs 242.52μs 6.52ms 406.71ms 26.47ms 0.1 396.74μs 141.65μs 872.40μs 37.84ms 3.75s 18.73ms 0.5 1.16ms 475.39μs 3.69ms 175.02ms n/a 19.45ms ========= ========== ========== ========== ========== ========== ========= [ 68.75%] ····· For parameters: 0.01, 'dia' /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1801 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1810 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1792 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) For parameters: 0.1, 'dia' /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1982 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1980 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1981 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) For parameters: 0.5, 'dia' /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1998 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1997 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) [ 71.88%] ··· Running sparse.Sum.time_sum_axis1 ok [ 71.88%] ···· ========= ========== ========== ========== ========= ========= ======== -- format --------- ------------------------------------------------------------- density csr csc coo lil dok dia ========= ========== ========== ========== ========= ========= ======== 0.01 99.23μs 99.23μs 87.11μs 1.82ms 6.88ms 1.23ms 0.1 135.73μs 237.64μs 235.32μs 13.73ms 73.42ms 1.26ms 0.5 459.19μs 919.20μs 950.93μs 60.79ms n/a 1.16ms ========= ========== ========== ========== ========= ========= ======== [ 71.88%] ····· For parameters: 0.01, 'dia' /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1801 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1810 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1792 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) For parameters: 0.1, 'dia' /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1982 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1980 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1981 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) For parameters: 0.5, 'dia' /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1998 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) /home/sourav/scipy/build/testenv/lib/python2.7/site-packages/scipy/sparse/coo.py:359: SparseEfficiencyWarning: Constructing a DIA matrix with 1997 diagonals is inefficient "is inefficient" % len(diags), SparseEfficiencyWarning) [ 75.00%] ··· Running sparse_csgraph.Laplacian.time_laplacian ok [ 75.00%] ···· ===== ======== ========== ========== -- normed -------------- --------------------- n format True False ===== ======== ========== ========== 30 dense 56.09μs 21.79μs 30 coo 350.83μs 313.56μs 30 csc 248.58μs 213.56μs 30 csr 350.05μs 308.34μs 30 dia 325.36μs 177.90μs 300 dense 563.47μs 177.60μs 300 coo 463.76μs 366.49μs 300 csc 341.95μs 282.80μs 300 csr 468.02μs 378.14μs 300 dia 588.34μs 221.08μs 900 dense 6.29ms 3.28ms 900 coo 614.70μs 456.11μs 900 csc 535.55μs 382.68μs 900 csr 622.84μs 468.63μs 900 dia 1.10ms 308.10μs ===== ======== ========== ========== [ 78.12%] ··· Running sparse_linalg_expm.Expm.time_expm ok [ 78.12%] ···· ===== ========== ========== -- format ----- --------------------- n sparse dense ===== ========== ========== 30 21.03ms 737.10μs 100 66.85ms 8.90ms 300 481.77ms 198.12ms ===== ========== ========== [ 81.25%] ··· Running sparse_linalg_expm.ExpmMultiply.time_expm_multiply ok [ 81.25%] ···· ============ ========= run format ------------ --------- sparse 13.36ms full 59.51s ============ ========= [ 84.38%] ··· Running sparse_linalg_lobpcg.Bench.time_mikota ok [ 84.38%] ···· ====== ========== ========== -- solver ------ --------------------- n lobpcg eigh ====== ========== ========== 128 26.37ms 5.61ms 256 60.80ms 36.11ms 512 204.74ms 251.08ms 1024 1.04s 1.94s 2048 6.33s 15.10s ====== ========== ========== [ 87.50%] ··· Running sparse_linalg_lobpcg.Bench.time_sakurai ok [ 87.50%] ···· ====== ========== ========== -- solver ------ --------------------- n lobpcg eigh ====== ========== ========== 50 53.04ms 623.91μs 400 565.80ms 222.01ms 2400 1.63s 45.62s ====== ========== ========== [ 90.62%] ··· Running sparse_linalg_onenormest.BenchmarkOneNormEst.time_onenormest 2/24 failed [ 90.62%] ···· =========== ========== ============ -- solver ----------- ----------------------- n exact onenormest =========== ========== ============ 2 2.19ms 4.61ms 3 2.27ms 46.33ms 5 2.18ms 45.71ms 10 2.27ms 46.89ms 30 3.18ms 47.05ms 100 19.97ms 57.92ms 300 332.06ms 127.15ms 500 1.84s 283.93ms 1000 failed failed 10000.0 n/a 2.60ms 100000.0 n/a 50.70ms 1000000.0 n/a 328.50ms =========== ========== ============ [ 90.62%] ····· For parameters: 1000, 'exact' Traceback (most recent call last): File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 795, in <module> commands[mode](args) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 766, in main_run skip = benchmark.do_setup() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 499, in do_setup result = Benchmark.do_setup(self) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 434, in do_setup setup(*self._current_params) File "/home/sourav/scipy/benchmarks/benchmarks/sparse_linalg_onenormest.py", line 32, in setup M = np.random.randn(*shape) File "mtrand.pyx", line 1680, in mtrand.RandomState.randn (numpy/random/mtrand/mtrand.c:17791) File "mtrand.pyx", line 1810, in mtrand.RandomState.standard_normal (numpy/random/mtrand/mtrand.c:18258) File "mtrand.pyx", line 163, in mtrand.cont0_array (numpy/random/mtrand/mtrand.c:2204) MemoryError For parameters: 1000, 'onenormest' Traceback (most recent call last): File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 795, in <module> commands[mode](args) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 766, in main_run skip = benchmark.do_setup() File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 499, in do_setup result = Benchmark.do_setup(self) File "/home/sourav/miniconda2/lib/python2.7/site-packages/asv/benchmark.py", line 434, in do_setup setup(*self._current_params) File "/home/sourav/scipy/benchmarks/benchmarks/sparse_linalg_onenormest.py", line 32, in setup M = np.random.randn(*shape) File "mtrand.pyx", line 1680, in mtrand.RandomState.randn (numpy/random/mtrand/mtrand.c:17791) File "mtrand.pyx", line 1810, in mtrand.RandomState.standard_normal (numpy/random/mtrand/mtrand.c:18258) File "mtrand.pyx", line 163, in mtrand.cont0_array (numpy/random/mtrand/mtrand.c:2204) MemoryError [ 93.75%] ··· Running sparse_linalg_solve.Bench.time_solve ok [ 93.75%] ···· ======= ========== ========== ========== ========== ========== -- solver ------- ------------------------------------------------------ (n,n) dense spsolve cg minres lgmres ======= ========== ========== ========== ========== ========== 4 79.21μs 81.83μs 263.02μs 358.88μs 502.23μs 6 141.36μs 104.33μs 432.53μs 660.30μs 760.73μs 10 1.33ms 331.23μs 770.26μs 1.18ms 1.55ms 16 21.59ms 808.02μs 1.36ms 2.02ms 2.87ms 25 n/a 2.51ms 2.55ms 3.29ms 9.58ms 40 n/a 8.60ms 5.69ms 5.51ms 21.69ms 64 n/a 34.19ms 15.00ms 11.66ms 56.64ms 100 n/a 118.94ms 48.90ms 28.46ms 196.65ms ======= ========== ========== ========== ========== ========== [ 96.88%] ··· Running sparse_linalg_solve.Lgmres.time_inner ok [ 96.88%] ···· ======= ========== ========== ========== ========== ========== -- m ------- ------------------------------------------------------ n 10 30 60 90 180 ======= ========== ========== ========== ========== ========== 10 451.13μs 435.68μs 380.48μs 366.35μs 368.92μs 50 894.45μs 881.95μs 988.17μs 904.44μs 895.64μs 100 1.11ms 1.29ms 1.28ms 1.29ms 1.31ms 1000 1.98ms 6.37ms 17.31ms 42.94ms 125.95ms 10000 23.23ms 78.07ms 194.35ms 371.28ms 1.04s ======= ========== ========== ========== ========== ========== [100.00%] ··· Running spatial.Neighbors.time_sparse_distance_matrix ok [100.00%] ···· ================== ===== ============== ========== ============ ========== =========== -- boxsize / leafsize --------------------------------------- ---------------------------------------------- (m, n1, n2) p probe radius None / 8 None / 128 1.0 / 8 1.0 / 128 ================== ===== ============== ========== ============ ========== =========== (3, 1000, 1000) 1 0.2 9.16ms 14.65ms 13.76ms 20.82ms (3, 1000, 1000) 1 0.5 108.27ms 109.20ms 177.91ms 172.97ms (3, 1000, 1000) 2 0.2 20.93ms 25.02ms 35.48ms 41.48ms (3, 1000, 1000) 2 0.5 276.69ms 276.98ms 570.13ms 553.05ms (3, 1000, 1000) inf 0.2 40.42ms 45.65ms 62.87ms 67.38ms (3, 1000, 1000) inf 0.5 450.27ms 448.20ms 1.22s 1.21s (8, 1000, 1000) 1 0.2 12.44ms 11.51ms 23.92ms 20.24ms (8, 1000, 1000) 1 0.5 21.13ms 18.55ms 36.89ms 32.31ms (8, 1000, 1000) 2 0.2 11.61ms 11.94ms 26.29ms 22.52ms (8, 1000, 1000) 2 0.5 16.10ms 14.97ms 63.91ms 58.98ms (8, 1000, 1000) inf 0.2 16.71ms 13.25ms 30.56ms 23.47ms (8, 1000, 1000) inf 0.5 130.63ms 121.14ms 1.31s 1.31s (16, 1000, 1000) 1 0.2 15.54ms 14.26ms 25.01ms 24.04ms (16, 1000, 1000) 1 0.5 26.48ms 24.11ms 38.89ms 34.98ms (16, 1000, 1000) 2 0.2 20.66ms 20.21ms 27.34ms 24.18ms (16, 1000, 1000) 2 0.5 21.90ms 20.33ms 53.81ms 49.22ms (16, 1000, 1000) inf 0.2 20.09ms 15.68ms 32.13ms 25.19ms (16, 1000, 1000) inf 0.5 46.87ms 40.80ms 1.36s 1.32s ================== ===== ============== ========== ============ ========== ===========