Skip to content

Instantly share code, notes, and snippets.

@srbhr
Created August 1, 2023 14:47
Show Gist options
  • Save srbhr/d6061a5cb53e5051696e33b0531a7d3f to your computer and use it in GitHub Desktop.
Save srbhr/d6061a5cb53e5051696e33b0531a7d3f to your computer and use it in GitHub Desktop.
Resume Matcher Cohere Embeddings Integration with Qdrant
# -*- coding: utf-8 -*-
"""Resume-Matcher-Cohere-Embeddings-Alpha.ipynb
Automatically generated by Colaboratory.
"""
!pip install cohere --quiet
!pip install qdrant-client --quiet
COHERE_API_KEY = "API_KEY"
QDRANT_API_KEY = "API_KEY"
import cohere
cohere_client = cohere.Client(COHERE_API_KEY)
embeddings = cohere_client.embed(
texts=["A test sentence"],
model="large",
)
vector_size = len(embeddings.embeddings[0])
vector_size
from qdrant_client import QdrantClient
from qdrant_client import models
from qdrant_client.http import models as rest
from qdrant_client.http.models import Batch
qdrant_client = QdrantClient(
"https://test-test-test",
prefer_grpc=True,
api_key="API_KEY",
)
qdrant_client.recreate_collection(
collection_name="resume-matcher",
vectors_config=models.VectorParams(
size=vector_size,
distance=rest.Distance.COSINE
),
)
qdrant_client.upsert(
collection_name="resume-matcher",
points=Batch(
ids=[1],
vectors=[
list(map(float, vector))
for vector in cohere_client.embed(
model="large",
texts=["The best vector database"],
).embeddings
],
)
)
embeddings = cohere_client.embed(
model="large",
texts=["The best vector database"],
).embeddings
first_vector = embeddings[0]
query_vector = list(map(float, first_vector))
hits = qdrant_client.search(
collection_name="resume-matcher",
query_vector=query_vector,
limit=3
)
for hit in hits:
print(hit.payload, "score:", hit.score)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment