Skip to content

Instantly share code, notes, and snippets.

@stefan-it
Last active April 2, 2022 13:28
Show Gist options
  • Select an option

  • Save stefan-it/feb6c35bde049b2c19d8dda06fa0a465 to your computer and use it in GitHub Desktop.

Select an option

Save stefan-it/feb6c35bde049b2c19d8dda06fa0a465 to your computer and use it in GitHub Desktop.

Revisions

  1. stefan-it revised this gist Sep 13, 2019. 1 changed file with 2 additions and 3 deletions.
    5 changes: 2 additions & 3 deletions run_ner.py
    Original file line number Diff line number Diff line change
    @@ -474,7 +474,6 @@ def evaluate(args, model, tokenizer, prefix, label_map):
    logger.info("\n%s", report)
    writer.write(report)

    return results


    def load_and_cache_examples(args, task, tokenizer, evaluate=False):
    @@ -710,8 +709,8 @@ def main():
    model.to(args.device)
    label_map = {i : label for i, label in enumerate(label_list,1)}
    result = evaluate(args, model, tokenizer, prefix=global_step, label_map=label_map)
    result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
    results.update(result)
    #result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
    #results.update(result)

    return results

  2. stefan-it created this gist Sep 13, 2019.
    720 changes: 720 additions & 0 deletions run_ner.py
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,720 @@
    from __future__ import absolute_import, division, print_function

    import argparse
    import glob
    import logging
    import os
    import random

    import numpy as np
    import torch
    from torch import nn
    import torch.nn.functional as F
    from torch.nn import CrossEntropyLoss
    from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
    TensorDataset)
    from torch.utils.data.distributed import DistributedSampler
    from tensorboardX import SummaryWriter
    from tqdm import tqdm, trange

    from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
    BertForTokenClassification,
    BertForSequenceClassification, BertTokenizer,
    RobertaConfig,
    RobertaForSequenceClassification,
    RobertaTokenizer,
    XLMConfig, XLMForSequenceClassification,
    XLMTokenizer, XLNetConfig,
    XLNetForSequenceClassification,
    XLNetTokenizer)

    from pytorch_transformers import AdamW, WarmupLinearSchedule

    from seqeval.metrics import classification_report

    from utils_glue import compute_metrics

    # Prepare GLUE task
    output_modes = {
    "ner": "classification",
    }


    class Ner(BertForTokenClassification):

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None,valid_ids=None,attention_mask_label=None):
    #sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)

    sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask)

    batch_size,max_len,feat_dim = sequence_output.shape
    valid_output = torch.zeros(batch_size,max_len,feat_dim,dtype=torch.float32,device='cuda')
    for i in range(batch_size):
    jj = -1
    for j in range(max_len):
    if valid_ids[i][j].item() == 1:
    jj += 1
    valid_output[i][jj] = sequence_output[i][j]
    sequence_output = self.dropout(valid_output)
    logits = self.classifier(sequence_output)

    if labels is not None:
    loss_fct = CrossEntropyLoss(ignore_index=0)
    # Only keep active parts of the loss
    attention_mask_label = None
    if attention_mask_label is not None:
    active_loss = attention_mask_label.view(-1) == 1
    active_logits = logits.view(-1, self.num_labels)[active_loss]
    active_labels = labels.view(-1)[active_loss]
    loss = loss_fct(active_logits, active_labels)
    else:
    loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
    return loss
    else:
    return logits


    class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
    """Constructs a InputExample.
    Args:
    guid: Unique id for the example.
    text_a: string. The untokenized text of the first sequence. For single
    sequence tasks, only this sequence must be specified.
    text_b: (Optional) string. The untokenized text of the second sequence.
    Only must be specified for sequence pair tasks.
    label: (Optional) string. The label of the example. This should be
    specified for train and dev examples, but not for test examples.
    """
    self.guid = guid
    self.text_a = text_a
    self.text_b = text_b
    self.label = label

    class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids, label_id, valid_ids=None, label_mask=None):
    self.input_ids = input_ids
    self.input_mask = input_mask
    self.segment_ids = segment_ids
    self.label_id = label_id
    self.valid_ids = valid_ids
    self.label_mask = label_mask

    def readfile(filename):
    '''
    read file
    '''
    f = open(filename)
    data = []
    sentence = []
    label= []
    for line in f:
    if len(line)==0 or line.startswith('-DOCSTART') or line[0]=="\n":
    if len(sentence) > 0:
    data.append((sentence,label))
    sentence = []
    label = []
    continue
    splits = line.split(' ')
    sentence.append(splits[0])
    label.append(splits[-1][:-1])

    if len(sentence) >0:
    data.append((sentence,label))
    sentence = []
    label = []
    return data

    class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the train set."""
    raise NotImplementedError()

    def get_dev_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the dev set."""
    raise NotImplementedError()

    def get_labels(self):
    """Gets the list of labels for this data set."""
    raise NotImplementedError()

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
    """Reads a tab separated value file."""
    return readfile(input_file)


    class NerProcessor(DataProcessor):
    """Processor for the CoNLL-2003 data set."""

    def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
    self._read_tsv(os.path.join(data_dir, "train.txt")), "train")

    def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
    self._read_tsv(os.path.join(data_dir, "valid.txt")), "dev")

    def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
    self._read_tsv(os.path.join(data_dir, "test.txt")), "test")

    def get_labels(self):
    return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "[CLS]", "[SEP]"]

    def _create_examples(self,lines,set_type):
    examples = []
    for i,(sentence,label) in enumerate(lines):
    guid = "%s-%s" % (set_type, i)
    text_a = ' '.join(sentence)
    text_b = None
    label = label
    examples.append(InputExample(guid=guid,text_a=text_a,text_b=text_b,label=label))
    return examples

    def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer):
    """Loads a data file into a list of `InputBatch`s."""

    label_map = {label : i for i, label in enumerate(label_list,1)}

    features = []
    for (ex_index,example) in enumerate(examples):
    textlist = example.text_a.split(' ')
    labellist = example.label
    tokens = []
    labels = []
    valid = []
    label_mask = []
    for i, word in enumerate(textlist):
    token = tokenizer.tokenize(word)
    tokens.extend(token)
    label_1 = labellist[i]
    for m in range(len(token)):
    if m == 0:
    labels.append(label_1)
    valid.append(1)
    label_mask.append(1)
    else:
    valid.append(0)
    if len(tokens) >= max_seq_length - 1:
    tokens = tokens[0:(max_seq_length - 2)]
    labels = labels[0:(max_seq_length - 2)]
    valid = valid[0:(max_seq_length - 2)]
    label_mask = label_mask[0:(max_seq_length - 2)]
    ntokens = []
    segment_ids = []
    label_ids = []
    ntokens.append("[CLS]")
    segment_ids.append(0)
    valid.insert(0,1)
    label_mask.insert(0,1)
    label_ids.append(label_map["[CLS]"])
    for i, token in enumerate(tokens):
    ntokens.append(token)
    segment_ids.append(0)
    if len(labels) > i:
    label_ids.append(label_map[labels[i]])
    ntokens.append("[SEP]")
    segment_ids.append(0)
    valid.append(1)
    label_mask.append(1)
    label_ids.append(label_map["[SEP]"])
    input_ids = tokenizer.convert_tokens_to_ids(ntokens)
    input_mask = [1] * len(input_ids)
    label_mask = [1] * len(label_ids)
    while len(input_ids) < max_seq_length:
    input_ids.append(0)
    input_mask.append(0)
    segment_ids.append(0)
    label_ids.append(0)
    valid.append(1)
    label_mask.append(0)
    while len(label_ids) < max_seq_length:
    label_ids.append(0)
    label_mask.append(0)
    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(label_ids) == max_seq_length
    assert len(valid) == max_seq_length
    assert len(label_mask) == max_seq_length

    if ex_index < 5:
    logger.info("*** Example ***")
    logger.info("guid: %s" % (example.guid))
    logger.info("tokens: %s" % " ".join(
    [str(x) for x in tokens]))
    logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
    logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
    logger.info(
    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
    # logger.info("label: %s (id = %d)" % (example.label, label_ids))

    features.append(
    InputFeatures(input_ids=input_ids,
    input_mask=input_mask,
    segment_ids=segment_ids,
    label_id=label_ids,
    valid_ids=valid,
    label_mask=label_mask))
    return features

    logger = logging.getLogger(__name__)

    ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig)), ())

    MODEL_CLASSES = {
    'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
    'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
    }


    def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
    torch.cuda.manual_seed_all(args.seed)


    def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
    tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
    t_total = args.max_steps
    args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
    t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
    {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
    {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
    if args.fp16:
    try:
    from apex import amp
    except ImportError:
    raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
    model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
    model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
    model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
    output_device=args.local_rank,
    find_unused_parameters=True)

    # Train!
    logger.info("***** Running training *****")
    logger.info(" Num examples = %d", len(train_dataset))
    logger.info(" Num Epochs = %d", args.num_train_epochs)
    logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
    args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info(" Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args) # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
    epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
    for step, batch in enumerate(epoch_iterator):
    model.train()
    batch = tuple(t.to(args.device) for t in batch)
    input_ids, input_mask, segment_ids, label_ids, valid_ids,l_mask = batch
    inputs = {'input_ids': batch[0],
    'attention_mask': batch[1],
    'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM and RoBERTa don't use segment_ids
    'labels': batch[3]}
    #outputs = model(**inputs)
    outputs = model(input_ids, segment_ids, input_mask, label_ids,valid_ids,l_mask)
    loss = outputs #[0] # model outputs are always tuple in pytorch-transformers (see doc)

    if args.n_gpu > 1:
    loss = loss.mean() # mean() to average on multi-gpu parallel training
    if args.gradient_accumulation_steps > 1:
    loss = loss / args.gradient_accumulation_steps

    if args.fp16:
    with amp.scale_loss(loss, optimizer) as scaled_loss:
    scaled_loss.backward()
    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
    else:
    loss.backward()
    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

    tr_loss += loss.item()
    if (step + 1) % args.gradient_accumulation_steps == 0:
    scheduler.step() # Update learning rate schedule
    optimizer.step()
    model.zero_grad()
    global_step += 1

    if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
    # Log metrics
    if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
    results = evaluate(args, model, tokenizer)
    for key, value in results.items():
    tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
    logging_loss = tr_loss

    if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
    # Save model checkpoint
    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
    if not os.path.exists(output_dir):
    os.makedirs(output_dir)
    model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
    model_to_save.save_pretrained(output_dir)
    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
    logger.info("Saving model checkpoint to %s", output_dir)

    if args.max_steps > 0 and global_step > args.max_steps:
    epoch_iterator.close()
    break
    if args.max_steps > 0 and global_step > args.max_steps:
    train_iterator.close()
    break

    if args.local_rank in [-1, 0]:
    tb_writer.close()

    return global_step, tr_loss / global_step


    def evaluate(args, model, tokenizer, prefix, label_map):
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
    eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

    if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
    os.makedirs(eval_output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
    eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info(" Num examples = %d", len(eval_dataset))
    logger.info(" Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    y_true = []
    y_pred = []
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
    model.eval()
    batch = tuple(t.to(args.device) for t in batch)

    with torch.no_grad():
    input_ids, input_mask, segment_ids, label_ids, valid_ids,l_mask = batch
    outputs = model(input_ids, segment_ids, input_mask,valid_ids=valid_ids,attention_mask_label=l_mask)
    logits = outputs #[:2]

    logits = torch.argmax(F.log_softmax(logits,dim=2),dim=2)
    logits = logits.detach().cpu().numpy()
    label_ids = label_ids.to('cpu').numpy()
    input_mask = input_mask.to('cpu').numpy()

    for i, label in enumerate(label_ids):
    temp_1 = []
    temp_2 = []
    for j,m in enumerate(label):
    if j == 0:
    continue
    elif label_ids[i][j] == len(label_map):
    y_true.append(temp_1)
    y_pred.append(temp_2)
    break
    else:
    temp_1.append(label_map[label_ids[i][j]])
    temp_2.append(label_map[logits[i][j]])

    report = classification_report(y_true, y_pred,digits=4)
    logger.info("\n%s", report)
    output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
    with open(output_eval_file, "w") as writer:
    logger.info("***** Eval results *****")
    logger.info("\n%s", report)
    writer.write(report)

    return results


    def load_and_cache_examples(args, task, tokenizer, evaluate=False):
    if args.local_rank not in [-1, 0] and not evaluate:
    torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    processor = NerProcessor()
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
    'dev' if evaluate else 'train',
    list(filter(None, args.model_name_or_path.split('/'))).pop(),
    str(args.max_seq_length),
    str(task)))
    if os.path.exists(cached_features_file):
    logger.info("Loading features from cached file %s", cached_features_file)
    features = torch.load(cached_features_file)
    else:
    logger.info("Creating features from dataset file at %s", args.data_dir)
    label_list = processor.get_labels()
    if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta']:
    # HACK(label indices are swapped in RoBERTa pretrained model)
    label_list[1], label_list[2] = label_list[2], label_list[1]
    examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)

    # Changed
    features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer)

    if args.local_rank in [-1, 0]:
    logger.info("Saving features into cached file %s", cached_features_file)
    torch.save(features, cached_features_file)

    if args.local_rank == 0 and not evaluate:
    torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
    all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
    all_valid_ids = torch.tensor([f.valid_ids for f in features], dtype=torch.long)
    all_lmask_ids = torch.tensor([f.label_mask for f in features], dtype=torch.long)

    dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids,all_valid_ids,all_lmask_ids)

    #dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
    return dataset


    def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
    help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--model_type", default=None, type=str, required=True,
    help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
    help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
    parser.add_argument("--task_name", default="ner", type=str, required=True,
    help="The name of the task to train selected in the list: ner")
    parser.add_argument("--output_dir", default=None, type=str, required=True,
    help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--config_name", default="", type=str,
    help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
    help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
    help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
    help="The maximum total input sequence length after tokenization. Sequences longer "
    "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--do_train", action='store_true',
    help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
    help="Whether to run eval on the dev set.")
    parser.add_argument("--evaluate_during_training", action='store_true',
    help="Rul evaluation during training at each logging step.")
    parser.add_argument("--do_lower_case", action='store_true',
    help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
    help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
    help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
    help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
    help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float,
    help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
    help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
    help="Max gradient norm.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
    help="Total number of training epochs to perform.")
    parser.add_argument("--max_steps", default=-1, type=int,
    help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
    help="Linear warmup over warmup_steps.")

    parser.add_argument('--logging_steps', type=int, default=50,
    help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
    help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
    help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
    parser.add_argument("--no_cuda", action='store_true',
    help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
    help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
    help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed', type=int, default=42,
    help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
    help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
    help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
    "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank", type=int, default=-1,
    help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
    args = parser.parse_args()

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
    raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
    # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
    import ptvsd
    print("Waiting for debugger attach")
    ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
    ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
    device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    args.n_gpu = torch.cuda.device_count()
    else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
    torch.cuda.set_device(args.local_rank)
    device = torch.device("cuda", args.local_rank)
    torch.distributed.init_process_group(backend='nccl')
    args.n_gpu = 1
    args.device = device

    # Setup logging
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
    datefmt = '%m/%d/%Y %H:%M:%S',
    level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)

    # Set seed
    set_seed(args)

    processors = {'ner': NerProcessor}


    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list) + 1

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
    torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)

    model = Ner.from_pretrained(args.model_name_or_path, num_labels=num_labels)

    if args.local_rank == 0:
    torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)


    # Training
    if args.do_train:
    train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
    global_step, tr_loss = train(args, train_dataset, model, tokenizer)
    logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)


    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
    # Create output directory if needed
    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
    os.makedirs(args.output_dir)

    logger.info("Saving model checkpoint to %s", args.output_dir)
    # Save a trained model, configuration and tokenizer using `save_pretrained()`.
    # They can then be reloaded using `from_pretrained()`
    model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
    model_to_save.save_pretrained(args.output_dir)
    tokenizer.save_pretrained(args.output_dir)

    # Good practice: save your training arguments together with the trained model
    torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

    # Load a trained model and vocabulary that you have fine-tuned
    model = model_class.from_pretrained(args.output_dir)
    tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
    model.to(args.device)


    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
    tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
    checkpoints = [args.output_dir]
    if args.eval_all_checkpoints:
    checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
    logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
    logger.info("Evaluate the following checkpoints: %s", checkpoints)
    for checkpoint in checkpoints:
    global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
    model = model_class.from_pretrained(checkpoint)
    model = Ner.from_pretrained(checkpoint, num_labels=num_labels)
    model.to(args.device)
    label_map = {i : label for i, label in enumerate(label_list,1)}
    result = evaluate(args, model, tokenizer, prefix=global_step, label_map=label_map)
    result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
    results.update(result)

    return results


    if __name__ == "__main__":
    main()