Last active
June 27, 2023 09:44
-
-
Save sylvchev/547231bc838c2f0b8c90d6d9b440feb9 to your computer and use it in GitHub Desktop.
Revisions
-
Sylvain Chevallier revised this gist
Jun 27, 2023 . 1 changed file with 89 additions and 0 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -5,6 +5,12 @@ import pyriemann from sklearn.pipeline import Pipeline from sklearn.decomposition import PCA from pyriemann.tangentspace import TangentSpace import matplotlib.pyplot as plt def generate_samples_snr(n, m, snr=10., dof=3, alpha=1e-6): """Generate sample with structured and unstructured noise @@ -37,6 +43,13 @@ def generate_samples_snr(n, m, snr=10., dof=3, alpha=1e-6): return P, P2, np.array(C) def generate_dataset_snr(n, m, snr): """Generate dataset with structured and unstructured noise. """ _, P, C = generate_samples_snr(n, m, snr=snr, dof=1, alpha=1e-6) return P, C def generate_reference(n=20): """Generate a reference matrix P and its parameters @@ -77,6 +90,8 @@ def generate_robust_samples(n, m, D, U, epsilon): Diagonal elements U: ndarray, shape(n, n) Mixing matrix epsilon: float Perturbation to apply on the reference Returns ------- @@ -89,3 +104,77 @@ def generate_robust_samples(n, m, D, U, epsilon): while np.any(np.linalg.eigvalsh(C[i]) < 0.): C[i] = U @ np.diag(D + np.random.normal(0, epsilon, n)) @ U.T return C def generate_dataset_dispersion(n, m, ep): """Generate m covariance matrix samples from a reference Perturbate diagonal elements from the reference to generate a list of m matrices. Parameters ---------- n: int SPD matrices dimension m: int number of matrices epsilon: float Perturbation to apply on the reference Returns ------- P: ndarray, shape (n, n) Reference matrix C: ndarray, shape (m, n, n) SPD matrices """ P, D, U = generate_reference(n) C = generate_robust_samples(n, m, D, U, ep) return P, C def viz_pca_ts_dataset(obs_covs, groundtruth): m = obs_covs.shape[0] obs_mean = pyriemann.utils.mean.mean_riemann(obs_covs) ts = Pipeline([('mapping', TangentSpace(metric='riemann', tsupdate=False)), ('dim_reduc', PCA(n_components=2))]) ts.fit(np.concatenate((obs_covs, groundtruth[np.newaxis, ...], obs_mean[np.newaxis, ...]))) C_ts = ts.transform(np.concatenate((obs_covs, groundtruth[np.newaxis, ...], obs_mean[np.newaxis, ...]))) fig, ax = plt.subplots(1, 1, figsize=(9, 9)) ax.set_title("Tangent space, original data") ax.scatter(C_ts[0:m, 0], C_ts[0:m, 1], c="g", alpha=0.3, label=r'$C_k$') ax.scatter(C_ts[-2, 0], C_ts[-2, 1], c="k", label=r'ground truth mean $\mathcal{G}$', marker='*', s=300) ax.scatter(C_ts[-1, 0], C_ts[-1, 1], c="r", label=r'observed mean $\hat{\mathcal{G}}$', marker='*', s=300) _ = ax.legend() plt.show() if __name__ == "__main__": n = 10 m = 1000 epsilon = 0.4 P, C = generate_dataset_dispersion(n, m, epsilon) # plot reference matrix plt.figure() plt.imshow(P) plt.xticks([]) _ = plt.yticks([]) # Plot 10 first covariance matrices plt.figure() for i in range(10): plt.subplot(2, 5, i+1) plt.imshow(C[i]) plt.xticks([]) plt.yticks([]) plt.tight_layout() viz_pca_ts_dataset(C, P) -
Sylvain Chevallier revised this gist
Jun 27, 2023 . 1 changed file with 91 additions and 1 deletion.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -1 +1,91 @@ import numpy as np from numpy.random import chisquare from scipy.stats import lognorm import scipy as sp import pyriemann def generate_samples_snr(n, m, snr=10., dof=3, alpha=1e-6): """Generate sample with structured and unstructured noise No the best generative model in practice, SNR estimation is interesting but sample diversity is difficult to harness with this formalism. """ U = 2 * np.random.rand(n, n) - 1 U = U / np.resize(np.linalg.norm(U, axis=0), (n, n)) C, D = [], [] for _ in range(m): Dk = np.diag(chisquare(dof, n) / dof * np.array([0.5**i for i in range(1, n+1)])) D.append(Dk) signal = U @ Dk @ U.T V = 2 * np.random.rand(n, n) - 1 V = V / np.resize(np.linalg.norm(V, axis=0), (n, n)) E = np.diag(chisquare(dof, n) / dof * np.array([0.5**i for i in range(1, n+1)])) struct_noise = V @ E @ V.T uncorr_noise = alpha * np.eye(n) v = np.trace(signal) / (snr * np.trace(struct_noise + uncorr_noise)) C.append(signal + v*(struct_noise + uncorr_noise)) LD = 0 for d in D: LD += logm(d) P = expm(LD/m) P2 = U @ np.array(D).mean(axis=0) @ U.T return P, P2, np.array(C) def generate_reference(n=20): """Generate a reference matrix P and its parameters Parameters ---------- n: int SPD matrix dimension Returns ------- P: ndarray, shape (n, n) Reference matrix D: ndarray, shape (n, ) Diagonal elements U: ndarray, shape (n, n) Mixing matrix """ dummyMat = np.random.rand(n, 2 * n) U, _, _ = np.linalg.svd(dummyMat, full_matrices=True) D = np.random.triangular(1, 2, 5, n) P = U @ np.diag(D) @ U.T return P, D, U def generate_robust_samples(n, m, D, U, epsilon): """Generate m covariance matrix samples from a reference Perturbate diagonal elements from the reference to generate a list of m matrices. Parameters ---------- n: int SPD matrices dimension m: int number of matrices D: ndarray, shape (n,) Diagonal elements U: ndarray, shape(n, n) Mixing matrix Returns ------- C: ndarray, shape (m, n, n) SPD matrices """ C = np.array([U @ np.diag(D + np.random.normal(0, epsilon, n)) @ U.T for _ in range(m)]) for i in range(m): while np.any(np.linalg.eigvalsh(C[i]) < 0.): C[i] = U @ np.diag(D + np.random.normal(0, epsilon, n)) @ U.T return C -
sylvchev created this gist
Jun 26, 2023 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1 @@ # Hi world