Skip to content

Instantly share code, notes, and snippets.

# This is .editorconfig example
[*]
end_of_line = lf
charset = utf-8
trim_trailing_whitespace = true
insert_final_newline = true
indent_style = space
indent_size = 2
import csv
import codecs
import sys
argvs = sys.argv
if len(argvs) < 2:
quit()
input_file = argvs[1]
output_file = argvs[2]
"""
This script lets you download a file from S3 bucket.
First you need to configure your AWS account using 'aws configure' command.
It needs your AWS Access Key ID and AWS Secret Access Key.
"""
import boto3
import botocore
import csv
import cv2
import numpy as np
def augment_images(images, measurements):
augmented_images, augmented_measurements = [], []
for image, measurement in zip(images, measurements):
augmented_images.append(image)
augmented_measurements.append(measurement)
augmented_images.append(cv2.flip(image,1))
"""
Deep Convolutional Neural Network which extends Yann LeCun's LeNet-5 written in Keras.
"""
img_width, img_height = 150, 150
nb_train_samples = 2000
nb_validation_samples = 2000
nb_filters1 = 6
nb_filters2 = 16
nb_filters3 = 200
f = open('target.txt', encoding='shiftjis')
data1 = f.read()
f.close()
lines = data1.split('\n')
separated_text = ""
for line in lines:
a = line.split()
if len(a) > 0:
separated_text += a[0] + " "
import sys,os
from urllib import urlopen
from urllib import urlretrieve
from urllib2 import URLError,HTTPError
import commands
import subprocess
import argparse
import random
from PIL import Image
import os.path
import numpy as np
import _pickle as pickle
import gym
# hyperparameters
H = 200 # number of hidden layer neurons
batch_size = 10 # every how many episodes to do a param update?
learning_rate = 1e-4
gamma = 0.99 # discount factor for reward
decay_rate = 0.99 # decay factor for RMSProp leaky sum of grad^2
import numpy as np
import _pickle as pickle
import gym
# hyperparameters
H = 200 # number of hidden layer neurons
batch_size = 10 # every how many episodes to do a param update?
learning_rate = 1e-4
gamma = 0.99 # discount factor for reward
decay_rate = 0.99 # decay factor for RMSProp leaky sum of grad^2
first = () => {
return new Promise((resolve, reject)=> {
setTimeout(()=> {
console.log("first")
resolve()
}, 3000)
})
}
promise = first()