I hereby claim:
- I am thouis on github.
- I am thouis (https://keybase.io/thouis) on keybase.
- I have a public key whose fingerprint is A4F6 3AF2 C0E4 8CAE 7501 2BDE 2904 0D09 3557 95A4
To claim this, I am signing this object:
| import requests | |
| import time | |
| # https://github.com/twitterdev/enterprise-scripts-python/blob/main/Engagement-API/generate_user_access_tokens.py | |
| from generate_user_access_tokens import request_token, get_user_authorization, get_user_access_tokens, CONSUMER_KEY, CONSUMER_SECRET | |
| MY_ID = "PUT_YOUR_TWITTER_ID_NUMBER_HERE" | |
| def create_url(): |
| aahed | |
| aalii | |
| aargh | |
| aarti | |
| abaca | |
| abaci | |
| aback | |
| abacs | |
| abaft | |
| abaka |
| import os | |
| from urllib import request | |
| import numpy as np | |
| import pandas as pd | |
| # grab a large corpus of words, sorted by usage counts (Peter Norvig) | |
| if not os.path.isfile('count_1w.txt'): | |
| request.urlretrieve("https://norvig.com/ngrams/count_1w.txt", | |
| "count_1w.txt") |
| import sys | |
| import twitter | |
| import time | |
| # see https://python-twitter.readthedocs.io/en/latest/getting_started.html | |
| api = twitter.Api(consumer_key=CONSUMER_KEY, | |
| consumer_secret=CONSUMER_SECRET, | |
| access_token_key=ACCESS_TOKEN, | |
| access_token_secret=ACCESS_SECRET) |
I hereby claim:
To claim this, I am signing this object:
| def depth_to_space(x, blocksize=2): | |
| b, k, d, r, c = x.shape | |
| r1 = x.reshape((b, k // (blocksize ** 2), blocksize, blocksize, d, r, c)) | |
| r2 = r1.transpose(0, 1, 4, 5, 2, 6, 3) | |
| return r2.reshape((b, k // (blocksize ** 2), d, r * blocksize, c * blocksize)) |
| # coding=utf-8 | |
| import numpy as np | |
| import scipy.sparse as sparse | |
| # Evaluation code courtesy of Juan Nunez-Iglesias, taken from | |
| # https://github.com/janelia-flyem/gala/blob/master/gala/evaluate.py | |
| def adapted_rand(seg, gt, all_stats=False): | |
| """Compute Adapted Rand error as defined by the SNEMI3D contest [1] |
| import tensorflow as tf | |
| from tensorflow.python import control_flow_ops | |
| # from http://stackoverflow.com/a/34634291 | |
| def batch_norm(x, n_out, phase_train, scope='bn', affine=True): | |
| """ | |
| Batch normalization on convolutional maps. | |
| Args: | |
| x: Tensor, 4D BHWD input maps | |
| n_out: integer, depth of input maps |