-
-
Save tkahng/40af57d9414a11b8026d1635ea5e1bd5 to your computer and use it in GitHub Desktop.
Conway's Game of Life using a neural network with Keras and Tensorflow in Python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import tensorflow as tf | |
| from matplotlib.animation import FuncAnimation | |
| from tensorflow.keras.layers import Conv2D, InputLayer, Layer | |
| from tensorflow.keras.models import Sequential | |
| size = 128 | |
| n_frames = 240 | |
| full_size = (1, size, size, 1) | |
| env = np.random.randint(0, 2, full_size) | |
| # env = np.zeros(full_size, dtype=int) | |
| # glider = ((1, 2), (2, 3), (3, 1), (3, 2), (3, 3)) | |
| # for pos in glider: | |
| # env[(0,) + pos] = 1 | |
| class TorusPaddingLayer(Layer): | |
| def __init__(self, **kwargs): | |
| """Based on: https://stackoverflow.com/questions/39088489/tensorflow-periodic-padding""" | |
| super(TorusPaddingLayer, self).__init__(**kwargs) | |
| top_row = np.zeros((1, size)) | |
| bottom_row = np.zeros((1, size)) | |
| top_row[0, -1] = 1 | |
| bottom_row[-1, 0] = 1 | |
| self.pre = tf.convert_to_tensor(np.vstack((top_row, np.eye(size), bottom_row)), dtype=tf.float32) | |
| self.pre = tf.expand_dims(self.pre, 0) | |
| self.pre = tf.expand_dims(self.pre, -1) | |
| self.pre_T = tf.transpose(self.pre) | |
| def call(self, inputs): | |
| """Matrix product of three matrices of shape (1, size, size, 1) while keeping outer dimensions.""" | |
| return tf.einsum("abcd,ecfg,hfij->abij", self.pre, inputs, self.pre_T) | |
| def kernel(shape, dtype=None): | |
| kernel = np.ones(shape) | |
| kernel[1, 1] = 0 # Don't count the cell itself in the number of neighbours | |
| return tf.convert_to_tensor(kernel, dtype=dtype) | |
| # convolve2d of scipy does support torus-padding but that's obviously not as cool as a neural network | |
| model = Sequential([InputLayer(input_shape=full_size[1:]), | |
| TorusPaddingLayer(), | |
| Conv2D(1, 3, padding="valid", activation=None, use_bias=False, kernel_initializer=kernel)]) | |
| frames = [] | |
| for i in range(n_frames): | |
| neighbours = model(env) | |
| env = np.where((env & np.isin(neighbours, (2, 3))) | ((env == 0) & (neighbours == 3)), 1, 0) | |
| frames.append(env.squeeze()) | |
| fig = plt.figure(figsize=(6, 6)) | |
| ax = plt.axes(xlim=(0, size), ylim=(0, size)) | |
| render = plt.imshow(frames[0], interpolation="none", cmap="binary") | |
| def animate(i: int): | |
| render.set_array(frames[i]) | |
| return [render] | |
| anim = FuncAnimation(fig, animate, frames=n_frames, interval=30, blit=True) | |
| plt.axis("off") | |
| plt.gca().invert_yaxis() | |
| anim.save("glider.gif", fps=30) | |
| plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment