Created
          February 18, 2013 13:46 
        
      - 
      
- 
        Save tmcw/4977508 to your computer and use it in GitHub Desktop. 
Revisions
- 
        tmcw created this gist Feb 18, 2013 .There are no files selected for viewingThis file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1 @@ Extracted from [simple-statistics](https://github.com/tmcw/simple-statistics). This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,152 @@ // # [Jenks natural breaks optimization](http://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization) // // Implementations: [1](http://danieljlewis.org/files/2010/06/Jenks.pdf) (python), // [2](https://github.com/vvoovv/djeo-jenks/blob/master/main.js) (buggy), // [3](https://github.com/simogeo/geostats/blob/master/lib/geostats.js#L407) (works) function jenks(data, n_classes) { // Compute the matrices required for Jenks breaks. These matrices // can be used for any classing of data with `classes <= n_classes` function getMatrices(data, n_classes) { // in the original implementation, these matrices are referred to // as `LC` and `OP` // // * lower_class_limits (LC): optimal lower class limits // * variance_combinations (OP): optimal variance combinations for all classes var lower_class_limits = [], variance_combinations = [], // loop counters i, j, // the variance, as computed at each step in the calculation variance = 0; // Initialize and fill each matrix with zeroes for (i = 0; i < data.length + 1; i++) { var tmp1 = [], tmp2 = []; for (j = 0; j < n_classes + 1; j++) { tmp1.push(0); tmp2.push(0); } lower_class_limits.push(tmp1); variance_combinations.push(tmp2); } for (i = 1; i < n_classes + 1; i++) { lower_class_limits[1][i] = 1; variance_combinations[1][i] = 0; // in the original implementation, 9999999 is used but // since Javascript has `Infinity`, we use that. for (j = 2; j < data.length + 1; j++) { variance_combinations[j][i] = Infinity; } } for (var l = 2; l < data.length + 1; l++) { // `SZ` originally. this is the sum of the values seen thus // far when calculating variance. var sum = 0, // `ZSQ` originally. the sum of squares of values seen // thus far sum_squares = 0, // `WT` originally. This is the number of w = 0, // `IV` originally i4 = 0; // in several instances, you could say `Math.pow(x, 2)` // instead of `x * x`, but this is slower in some browsers // introduces an unnecessary concept. for (var m = 1; m < l + 1; m++) { // `III` originally var lower_class_limit = l - m + 1, val = data[lower_class_limit - 1]; // here we're estimating variance for each potential classing // of the data, for each potential number of classes. `w` // is the number of data points considered so far. w++; // increase the current sum and sum-of-squares sum += val; sum_squares += val * val; // the variance at this point in the sequence is the difference // between the sum of squares and the total x 2, over the number // of samples. variance = sum_squares - (sum * sum) / w; i4 = lower_class_limit - 1; if (i4 !== 0) { for (j = 2; j < n_classes + 1; j++) { // if adding this element to an existing class // will increase its variance beyond the limit, break // the class at this point, setting the lower_class_limit // at this point. if (variance_combinations[l][j] >= (variance + variance_combinations[i4][j - 1])) { lower_class_limits[l][j] = lower_class_limit; variance_combinations[l][j] = variance + variance_combinations[i4][j - 1]; } } } } lower_class_limits[l][1] = 1; variance_combinations[l][1] = variance; } // return the two matrices. for just providing breaks, only // `lower_class_limits` is needed, but variances can be useful to // evaluage goodness of fit. return { lower_class_limits: lower_class_limits, variance_combinations: variance_combinations }; } // the second part of the jenks recipe: take the calculated matrices // and derive an array of n breaks. function breaks(data, lower_class_limits, n_classes) { var k = data.length - 1, kclass = [], countNum = n_classes; // the calculation of classes will never include the upper and // lower bounds, so we need to explicitly set them kclass[n_classes] = data[data.length - 1]; kclass[0] = data[0]; // the lower_class_limits matrix is used as indexes into itself // here: the `k` variable is reused in each iteration. while (countNum > 1) { kclass[countNum - 1] = data[lower_class_limits[k][countNum] - 2]; k = lower_class_limits[k][countNum] - 1; countNum--; } return kclass; } if (n_classes > data.length) return null; // sort data in numerical order, since this is expected // by the matrices function data = data.slice().sort(function (a, b) { return a - b; }); // get our basic matrices var matrices = getMatrices(data, n_classes), // we only need lower class limits here lower_class_limits = matrices.lower_class_limits; // extract n_classes out of the computed matrices return breaks(data, lower_class_limits, n_classes); }