-
-
Save toi500/965c1dea073b2cb3c407f83597eaa361 to your computer and use it in GitHub Desktop.
Revisions
-
willccbb revised this gist
Jan 27, 2025 . 1 changed file with 2 additions and 2 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -125,8 +125,8 @@ def xmlcount_reward_func(completions, **kwargs) -> list[float]: task_type="CAUSAL_LM", lora_dropout=0.05, ) model_name = "meta-llama/Llama-3.2-1B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token trainer = GRPOTrainer( model=model_name, -
willccbb revised this gist
Jan 27, 2025 . 1 changed file with 0 additions and 1 deletion.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -61,7 +61,6 @@ def correctness_reward_func(prompts, completions, answer, **kwargs) -> list[floa q = prompts[0][-1]['content'] extracted_responses = [extract_xml_answer(r) for r in responses] print('-'*20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}") return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)] def int_reward_func(completions, **kwargs) -> list[float]: -
willccbb revised this gist
Jan 27, 2025 . 1 changed file with 28 additions and 7 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -8,7 +8,7 @@ # Load and prep dataset SYSTEM_PROMPT = """ Respond in the following format: <reasoning> ... @@ -18,6 +18,15 @@ </answer> """ XML_COT_FORMAT = """\ <reasoning> {reasoning} </reasoning> <answer> {answer} </answer> """ def extract_xml_answer(text: str) -> str: answer = text.split("<answer>")[-1] answer = answer.split("</answer>")[0] @@ -33,6 +42,11 @@ def get_gsm8k_questions(split = "train") -> Dataset: data = data.map(lambda x: { # type: ignore 'prompt': [ {'role': 'system', 'content': SYSTEM_PROMPT}, {'role': 'user', 'content': 'What is the largest single-digit prime number?'}, {'role': 'assistant', 'content': XML_COT_FORMAT.format( reasoning="9 is divisble by 3 and 8 is divisible by 2, but 7 is prime.", answer="7" )}, {'role': 'user', 'content': x['question']} ], 'answer': extract_hash_answer(x['answer']) @@ -77,24 +91,31 @@ def count_xml(text) -> float: count += 0.125 if text.count("\n<answer>\n") == 1: count += 0.125 count -= len(text.split("\n</answer>\n")[-1])*0.001 if text.count("\n</answer>") == 1: count += 0.125 count -= (len(text.split("\n</answer>")[-1]) - 1)*0.001 return count def xmlcount_reward_func(completions, **kwargs) -> list[float]: contents = [completion[0]["content"] for completion in completions] return [count_xml(c) for c in contents] training_args = GRPOConfig( output_dir="outputs/Llama-1B-base-GRPO", run_name="Llama-1B-base-GRPO-gsm8k", learning_rate=1e-6, adam_beta1 = 0.9, adam_beta2 = 0.95, weight_decay = 0.1, warmup_ratio = 0.1, lr_scheduler_type='cosine', logging_steps=1, per_device_train_batch_size=1, gradient_accumulation_steps=6, num_generations=12, max_completion_length=512, max_grad_norm=0.01, report_to="wandb", log_on_each_node=False, ) @@ -105,8 +126,8 @@ def xmlcount_reward_func(completions, **kwargs) -> list[float]: task_type="CAUSAL_LM", lora_dropout=0.05, ) model_name = "meta-llama/Llama-3.2-1B" tokenizer = AutoTokenizer.from_pretrained(model_name + "-Instruct") tokenizer.pad_token = tokenizer.eos_token trainer = GRPOTrainer( model=model_name, -
willccbb revised this gist
Jan 26, 2025 . 1 changed file with 2 additions and 1 deletion.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -1,4 +1,4 @@ # train_grpo.py import re from datasets import load_dataset, Dataset from transformers import AutoTokenizer @@ -94,6 +94,7 @@ def xmlcount_reward_func(completions, **kwargs) -> list[float]: gradient_accumulation_steps=6, num_generations=12, max_completion_length=512, max_grad_norm=0.001, report_to="wandb", log_on_each_node=False, ) -
willccbb created this gist
Jan 26, 2025 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,123 @@ # grpo_demo.py import re from datasets import load_dataset, Dataset from transformers import AutoTokenizer from peft import LoraConfig from trl import GRPOConfig, GRPOTrainer # Load and prep dataset SYSTEM_PROMPT = """ Respond the in the following format: <reasoning> ... </reasoning> <answer> ... </answer> """ def extract_xml_answer(text: str) -> str: answer = text.split("<answer>")[-1] answer = answer.split("</answer>")[0] return answer.strip() def extract_hash_answer(text: str) -> str | None: if "####" not in text: return None return text.split("####")[1].strip() def get_gsm8k_questions(split = "train") -> Dataset: data = load_dataset('openai/gsm8k', 'main')[split] # type: ignore data = data.map(lambda x: { # type: ignore 'prompt': [ {'role': 'system', 'content': SYSTEM_PROMPT}, {'role': 'user', 'content': x['question']} ], 'answer': extract_hash_answer(x['answer']) }) # type: ignore return data # type: ignore dataset = get_gsm8k_questions() # Reward functions def correctness_reward_func(prompts, completions, answer, **kwargs) -> list[float]: responses = [completion[0]['content'] for completion in completions] q = prompts[0][-1]['content'] extracted_responses = [extract_xml_answer(r) for r in responses] print('-'*20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}") responses = [extract_xml_answer(r) for r in responses] return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)] def int_reward_func(completions, **kwargs) -> list[float]: responses = [completion[0]['content'] for completion in completions] extracted_responses = [extract_xml_answer(r) for r in responses] return [0.5 if r.isdigit() else 0.0 for r in extracted_responses] def strict_format_reward_func(completions, **kwargs) -> list[float]: """Reward function that checks if the completion has a specific format.""" pattern = r"^<reasoning>\n.*?\n</reasoning>\n<answer>\n.*?\n</answer>\n$" responses = [completion[0]["content"] for completion in completions] matches = [re.match(pattern, r) for r in responses] return [0.5 if match else 0.0 for match in matches] def soft_format_reward_func(completions, **kwargs) -> list[float]: """Reward function that checks if the completion has a specific format.""" pattern = r"<reasoning>.*?</reasoning>\s*<answer>.*?</answer>" responses = [completion[0]["content"] for completion in completions] matches = [re.match(pattern, r) for r in responses] return [0.5 if match else 0.0 for match in matches] def count_xml(text) -> float: count = 0.0 if text.count("<reasoning>\n") == 1: count += 0.125 if text.count("\n</reasoning>\n") == 1: count += 0.125 if text.count("\n<answer>\n") == 1: count += 0.125 if text.count("\n</answer>") == 1: count += 0.125 return count def xmlcount_reward_func(completions, **kwargs) -> list[float]: contents = [completion[0]["content"] for completion in completions] return [count_xml(c) for c in contents] training_args = GRPOConfig( output_dir="outputs/Llama-1B-GRPO", run_name="Llama-1B-GRPO-gsm8k", learning_rate=3e-6, logging_steps=1, per_device_train_batch_size=1, gradient_accumulation_steps=6, num_generations=12, max_completion_length=512, report_to="wandb", log_on_each_node=False, ) peft_config = LoraConfig( r=16, lora_alpha=64, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "down_proj", "gate_proj"], task_type="CAUSAL_LM", lora_dropout=0.05, ) model_name = "meta-llama/Llama-3.2-1B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token trainer = GRPOTrainer( model=model_name, processing_class=tokenizer, reward_funcs=[ xmlcount_reward_func, soft_format_reward_func, strict_format_reward_func, int_reward_func, correctness_reward_func], args=training_args, train_dataset=dataset, #peft_config=peft_config ) trainer.train()