Skip to content

Instantly share code, notes, and snippets.

@tokenbender
Last active October 12, 2025 06:57
Show Gist options
  • Save tokenbender/17ab4a01c9bfc960930ac098a15aae43 to your computer and use it in GitHub Desktop.
Save tokenbender/17ab4a01c9bfc960930ac098a15aae43 to your computer and use it in GitHub Desktop.

Revisions

  1. tokenbender renamed this gist Jun 26, 2025. 1 changed file with 0 additions and 0 deletions.
    File renamed without changes.
  2. tokenbender created this gist Jun 26, 2025.
    786 changes: 786 additions & 0 deletions gistfile1.txt
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,786 @@
    import os
    import sys
    import time
    import math
    import pickle
    from contextlib import nullcontext
    from pathlib import Path
    import subprocess
    from dataclasses import dataclass
    import inspect

    import numpy as np
    import torch
    import torch.nn as nn
    from torch.nn import functional as F
    from torch.nn.parallel import DistributedDataParallel as DDP
    from torch.distributed import init_process_group, destroy_process_group

    # Modal imports
    import modal

    # ============================================================================
    # CONFIGURATION - All settings embedded here, no CLI args needed
    # ============================================================================

    # Modal configuration
    N_GPUS = 4 # Number of GPUs to use
    GPU_TYPE = "A100" # GPU type: "A100", "H200", "A10G", etc.

    # Training configuration for Shakespeare character-level model
    CONFIG = {
    # I/O
    "out_dir": "/data/checkpoints/shakespeare",
    "eval_interval": 250, # Will be auto-adjusted based on epochs
    "log_interval": 10, # Will be auto-adjusted based on epochs
    "eval_iters": 200,
    "eval_only": False,
    "always_save_checkpoint": True,
    "init_from": "scratch",

    # wandb logging
    "wandb_log": False,
    "wandb_project": "nanogpt-shakespeare",
    "wandb_run_name": "shakespeare-char",

    # data
    "dataset": "shakespeare_char",
    "gradient_accumulation_steps": 4, # Must be divisible by N_GPUS
    "batch_size": 64,
    "block_size": 256,

    # model
    "n_layer": 6,
    "n_head": 6,
    "n_embd": 384,
    "dropout": 0.2,
    "bias": False,

    # training epochs (max_iters will be calculated automatically)
    "num_epochs": 21.0, # Set the number of epochs you want

    # adamw optimizer
    "learning_rate": 1e-3,
    "max_iters": None, # Will be calculated based on num_epochs
    "weight_decay": 1e-1,
    "beta1": 0.9,
    "beta2": 0.95,
    "grad_clip": 1.0,

    # learning rate decay settings
    "decay_lr": True, # Will be auto-adjusted based on epochs
    "warmup_iters": None, # Will be calculated as percentage of max_iters
    "lr_decay_iters": None, # Will be set to max_iters
    "min_lr": 1e-4,

    # DDP settings
    "backend": "nccl",

    # system
    "device": "cuda",
    "dtype": "bfloat16",
    "compile": True,
    }

    # ============================================================================
    # MODEL DEFINITION - Embedded from model.py
    # ============================================================================

    class LayerNorm(nn.Module):
    """ LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """

    def __init__(self, ndim, bias):
    super().__init__()
    self.weight = nn.Parameter(torch.ones(ndim))
    self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None

    def forward(self, input):
    return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)

    class CausalSelfAttention(nn.Module):

    def __init__(self, config):
    super().__init__()
    assert config.n_embd % config.n_head == 0
    # key, query, value projections for all heads, but in a batch
    self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
    # output projection
    self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
    # regularization
    self.attn_dropout = nn.Dropout(config.dropout)
    self.resid_dropout = nn.Dropout(config.dropout)
    self.n_head = config.n_head
    self.n_embd = config.n_embd
    self.dropout = config.dropout
    # flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
    self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
    if not self.flash:
    print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
    # causal mask to ensure that attention is only applied to the left in the input sequence
    self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
    .view(1, 1, config.block_size, config.block_size))

    def forward(self, x):
    B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)

    # calculate query, key, values for all heads in batch and move head forward to be the batch dim
    q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
    k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
    q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
    v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)

    # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
    if self.flash:
    # efficient attention using Flash Attention CUDA kernels
    y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
    else:
    # manual implementation of attention
    att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
    att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
    att = F.softmax(att, dim=-1)
    att = self.attn_dropout(att)
    y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
    y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side

    # output projection
    y = self.resid_dropout(self.c_proj(y))
    return y

    class MLP(nn.Module):

    def __init__(self, config):
    super().__init__()
    self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
    self.gelu = nn.GELU()
    self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
    self.dropout = nn.Dropout(config.dropout)

    def forward(self, x):
    x = self.c_fc(x)
    x = self.gelu(x)
    x = self.c_proj(x)
    x = self.dropout(x)
    return x

    class Block(nn.Module):

    def __init__(self, config):
    super().__init__()
    self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
    self.attn = CausalSelfAttention(config)
    self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
    self.mlp = MLP(config)

    def forward(self, x):
    x = x + self.attn(self.ln_1(x))
    x = x + self.mlp(self.ln_2(x))
    return x

    @dataclass
    class GPTConfig:
    block_size: int = 1024
    vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
    n_layer: int = 12
    n_head: int = 12
    n_embd: int = 768
    dropout: float = 0.0
    bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster

    class GPT(nn.Module):

    def __init__(self, config):
    super().__init__()
    assert config.vocab_size is not None
    assert config.block_size is not None
    self.config = config

    self.transformer = nn.ModuleDict(dict(
    wte = nn.Embedding(config.vocab_size, config.n_embd),
    wpe = nn.Embedding(config.block_size, config.n_embd),
    drop = nn.Dropout(config.dropout),
    h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
    ln_f = LayerNorm(config.n_embd, bias=config.bias),
    ))
    self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
    # with weight tying when using torch.compile() some warnings get generated:
    # "UserWarning: functional_call was passed multiple values for tied weights.
    # This behavior is deprecated and will be an error in future versions"
    # not 100% sure what this is, so far seems to be harmless. TODO investigate
    self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying

    # init all weights
    self.apply(self._init_weights)
    # apply special scaled init to the residual projections, per GPT-2 paper
    for pn, p in self.named_parameters():
    if pn.endswith('c_proj.weight'):
    torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))

    # report number of parameters
    print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))

    def get_num_params(self, non_embedding=True):
    """
    Return the number of parameters in the model.
    For non-embedding count (default), the position embeddings get subtracted.
    The token embeddings would too, except due to the parameter sharing these
    params are actually used as weights in the final layer, so we include them.
    """
    n_params = sum(p.numel() for p in self.parameters())
    if non_embedding:
    n_params -= self.transformer.wpe.weight.numel()
    return n_params

    def _init_weights(self, module):
    if isinstance(module, nn.Linear):
    torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
    if module.bias is not None:
    torch.nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
    torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx, targets=None):
    device = idx.device
    b, t = idx.size()
    assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
    pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)

    # forward the GPT model itself
    tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
    pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
    x = self.transformer.drop(tok_emb + pos_emb)
    for block in self.transformer.h:
    x = block(x)
    x = self.transformer.ln_f(x)

    if targets is not None:
    # if we are given some desired targets also calculate the loss
    logits = self.lm_head(x)
    loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
    else:
    # inference-time mini-optimization: only forward the lm_head on the very last position
    logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
    loss = None

    return logits, loss

    def crop_block_size(self, block_size):
    # model surgery to decrease the block size if necessary
    # e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
    # but want to use a smaller block size for some smaller, simpler model
    assert block_size <= self.config.block_size
    self.config.block_size = block_size
    self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
    for block in self.transformer.h:
    if hasattr(block.attn, 'bias'):
    block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]

    def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
    # start with all of the candidate parameters
    param_dict = {pn: p for pn, p in self.named_parameters()}
    # filter out those that do not require grad
    param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
    # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
    # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
    decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
    nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
    optim_groups = [
    {'params': decay_params, 'weight_decay': weight_decay},
    {'params': nodecay_params, 'weight_decay': 0.0}
    ]
    num_decay_params = sum(p.numel() for p in decay_params)
    num_nodecay_params = sum(p.numel() for p in nodecay_params)
    print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
    print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
    # Create AdamW optimizer and use the fused version if it is available
    fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
    use_fused = fused_available and device_type == 'cuda'
    extra_args = dict(fused=True) if use_fused else dict()
    optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
    print(f"using fused AdamW: {use_fused}")

    return optimizer

    def estimate_mfu(self, fwdbwd_per_iter, dt):
    """ estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
    # first estimate the number of flops we do per iteration.
    # see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
    N = self.get_num_params()
    cfg = self.config
    L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size
    flops_per_token = 6*N + 12*L*H*Q*T
    flops_per_fwdbwd = flops_per_token * T
    flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
    # express our flops throughput as ratio of A100 bfloat16 peak flops
    flops_achieved = flops_per_iter * (1.0/dt) # per second
    flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
    mfu = flops_achieved / flops_promised
    return mfu

    @torch.no_grad()
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
    """
    Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
    the sequence max_new_tokens times, feeding the predictions back into the model each time.
    Most likely you'll want to make sure to be in model.eval() mode of operation for this.
    """
    for _ in range(max_new_tokens):
    # if the sequence context is growing too long we must crop it at block_size
    idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
    # forward the model to get the logits for the index in the sequence
    logits, _ = self(idx_cond)
    # pluck the logits at the final step and scale by desired temperature
    logits = logits[:, -1, :] / temperature
    # optionally crop the logits to only the top k options
    if top_k is not None:
    v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
    logits[logits < v[:, [-1]]] = -float('Inf')
    # apply softmax to convert logits to (normalized) probabilities
    probs = F.softmax(logits, dim=-1)
    # sample from the distribution
    idx_next = torch.multinomial(probs, num_samples=1)
    # append sampled index to the running sequence and continue
    idx = torch.cat((idx, idx_next), dim=1)

    return idx

    # ============================================================================
    # DATA PREPARATION
    # ============================================================================

    def ensure_shakespeare_data(data_root="/data"):
    """Download and prepare Shakespeare dataset if not exists"""
    import requests

    data_dir = os.path.join(data_root, "shakespeare_char")

    # Check if prepared data already exists
    train_path = os.path.join(data_dir, "train.bin")
    val_path = os.path.join(data_dir, "val.bin")
    meta_path = os.path.join(data_dir, "meta.pkl")

    if os.path.exists(train_path) and os.path.exists(val_path) and os.path.exists(meta_path):
    print(f"Shakespeare data already prepared in {data_dir}")
    return

    # Create directory
    os.makedirs(data_dir, exist_ok=True)

    # Download the tiny shakespeare dataset
    input_file_path = os.path.join(data_dir, 'input.txt')
    if not os.path.exists(input_file_path):
    print("Downloading Shakespeare dataset...")
    data_url = 'https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt'
    with open(input_file_path, 'w') as f:
    f.write(requests.get(data_url).text)

    with open(input_file_path, 'r') as f:
    data = f.read()
    print(f"length of dataset in characters: {len(data):,}")

    # get all the unique characters that occur in this text
    chars = sorted(list(set(data)))
    vocab_size = len(chars)
    print("all the unique characters:", ''.join(chars))
    print(f"vocab size: {vocab_size:,}")

    # create a mapping from characters to integers
    stoi = { ch:i for i,ch in enumerate(chars) }
    itos = { i:ch for i,ch in enumerate(chars) }
    def encode(s):
    return [stoi[c] for c in s] # encoder: take a string, output a list of integers
    def decode(l):
    return ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string

    # create the train and test splits
    n = len(data)
    train_data = data[:int(n*0.9)]
    val_data = data[int(n*0.9):]

    # encode both to integers
    train_ids = encode(train_data)
    val_ids = encode(val_data)
    print(f"train has {len(train_ids):,} tokens")
    print(f"val has {len(val_ids):,} tokens")

    # export to bin files
    train_ids = np.array(train_ids, dtype=np.uint16)
    val_ids = np.array(val_ids, dtype=np.uint16)
    train_ids.tofile(train_path)
    val_ids.tofile(val_path)

    # save the meta information as well, to help us encode/decode later
    meta = {
    'vocab_size': vocab_size,
    'itos': itos,
    'stoi': stoi,
    }
    with open(meta_path, 'wb') as f:
    pickle.dump(meta, f)

    print("Data preparation complete!")

    # ============================================================================
    # TRAINING SCRIPT
    # ============================================================================

    def train():
    """Main training function that runs under torchrun"""

    # Load configuration
    cfg = CONFIG

    # Setup DDP
    ddp = int(os.environ.get('RANK', -1)) != -1
    if ddp:
    init_process_group(backend=cfg['backend'])
    ddp_rank = int(os.environ['RANK'])
    ddp_local_rank = int(os.environ['LOCAL_RANK'])
    ddp_world_size = int(os.environ['WORLD_SIZE'])
    device = f'cuda:{ddp_local_rank}'
    torch.cuda.set_device(device)
    master_process = ddp_rank == 0
    seed_offset = ddp_rank
    assert cfg['gradient_accumulation_steps'] % ddp_world_size == 0
    gradient_accumulation_steps = cfg['gradient_accumulation_steps'] // ddp_world_size
    else:
    # single gpu
    master_process = True
    seed_offset = 0
    ddp_world_size = 1
    device = cfg['device']
    gradient_accumulation_steps = cfg['gradient_accumulation_steps']

    tokens_per_iter = gradient_accumulation_steps * ddp_world_size * cfg['batch_size'] * cfg['block_size']
    print(f"tokens per iteration will be: {tokens_per_iter:,}")

    if master_process:
    os.makedirs(cfg['out_dir'], exist_ok=True)

    torch.manual_seed(1337 + seed_offset)
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True
    device_type = 'cuda' if 'cuda' in device else 'cpu'

    # Data setup
    data_dir = os.path.join("/data" if os.path.exists("/data") else "data", cfg['dataset'])

    # Calculate dataset size and iterations needed for requested epochs
    train_data_path = os.path.join(data_dir, 'train.bin')
    if os.path.exists(train_data_path):
    train_data = np.memmap(train_data_path, dtype=np.uint16, mode='r')
    dataset_tokens = len(train_data)
    print(f"Training dataset has {dataset_tokens:,} tokens")

    # Calculate iterations needed for the requested number of epochs
    if cfg['num_epochs'] is not None:
    iterations_per_epoch = dataset_tokens / tokens_per_iter
    cfg['max_iters'] = int(math.ceil(cfg['num_epochs'] * iterations_per_epoch))
    print(f"For {cfg['num_epochs']} epochs, need {cfg['max_iters']} iterations")
    print(f"Each epoch is ~{iterations_per_epoch:.1f} iterations")

    # Auto-adjust other parameters based on total iterations
    if cfg['warmup_iters'] is None:
    # Default 2% warmup
    cfg['warmup_iters'] = max(1, int(0.02 * cfg['max_iters']))

    if cfg['lr_decay_iters'] is None:
    cfg['lr_decay_iters'] = cfg['max_iters']

    # Adjust eval/log intervals for short runs
    if cfg['max_iters'] < 20:
    cfg['eval_interval'] = max(1, cfg['max_iters'] // 4)
    cfg['log_interval'] = 1
    cfg['eval_iters'] = min(50, cfg['eval_iters'])
    print(f"Adjusted for short run: eval_interval={cfg['eval_interval']}, log_interval={cfg['log_interval']}")

    # Disable learning rate decay for very short runs
    if cfg['max_iters'] < 10:
    cfg['decay_lr'] = False
    cfg['warmup_iters'] = 0
    print("Disabled learning rate decay for very short run")
    del train_data # Free memory
    else:
    if cfg['max_iters'] is None:
    raise ValueError("Cannot calculate max_iters: training data not found and max_iters not specified")

    def get_batch(split):
    # We recreate np.memmap every batch to avoid a memory leak
    if split == 'train':
    data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
    else:
    data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
    ix = torch.randint(len(data) - cfg['block_size'], (cfg['batch_size'],))
    x = torch.stack([torch.from_numpy((data[i:i+cfg['block_size']]).astype(np.int64)) for i in ix])
    y = torch.stack([torch.from_numpy((data[i+1:i+1+cfg['block_size']]).astype(np.int64)) for i in ix])
    if device_type == 'cuda':
    x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
    else:
    x, y = x.to(device), y.to(device)
    return x, y

    # Init these up here
    iter_num = 0
    best_val_loss = 1e9

    # Model init
    meta_path = os.path.join(data_dir, 'meta.pkl')
    meta_vocab_size = None
    if os.path.exists(meta_path):
    with open(meta_path, 'rb') as f:
    meta = pickle.load(f)
    meta_vocab_size = meta['vocab_size']
    print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})")

    # Model configuration
    model_args = dict(
    n_layer=cfg['n_layer'],
    n_head=cfg['n_head'],
    n_embd=cfg['n_embd'],
    block_size=cfg['block_size'],
    bias=cfg['bias'],
    vocab_size=meta_vocab_size if meta_vocab_size is not None else 50304,
    dropout=cfg['dropout']
    )

    if cfg['init_from'] == 'scratch':
    print("Initializing a new model from scratch")
    gptconf = GPTConfig(**model_args)
    model = GPT(gptconf)
    elif cfg['init_from'] == 'resume':
    print(f"Resuming training from {cfg['out_dir']}")
    ckpt_path = os.path.join(cfg['out_dir'], 'ckpt.pt')
    checkpoint = torch.load(ckpt_path, map_location=device)
    checkpoint_model_args = checkpoint['model_args']
    for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
    model_args[k] = checkpoint_model_args[k]
    gptconf = GPTConfig(**model_args)
    model = GPT(gptconf)
    state_dict = checkpoint['model']
    unwanted_prefix = '_orig_mod.'
    for k,v in list(state_dict.items()):
    if k.startswith(unwanted_prefix):
    state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
    model.load_state_dict(state_dict)
    iter_num = checkpoint['iter_num']
    best_val_loss = checkpoint['best_val_loss']

    # Move model to device
    model.to(device)

    # Initialize a GradScaler
    scaler = torch.cuda.amp.GradScaler(enabled=(cfg['dtype'] == 'float16'))

    # Optimizer
    optimizer = model.configure_optimizers(cfg['weight_decay'], cfg['learning_rate'],
    (cfg['beta1'], cfg['beta2']), device_type)
    if cfg['init_from'] == 'resume' and 'optimizer' in checkpoint:
    optimizer.load_state_dict(checkpoint['optimizer'])
    checkpoint = None # free up memory

    # Compile the model
    if cfg['compile']:
    print("compiling the model... (takes a ~minute)")
    unoptimized_model = model
    model = torch.compile(model)

    # Wrap model into DDP container
    if ddp:
    model = DDP(model, device_ids=[ddp_local_rank])

    # Training helpers
    ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[cfg['dtype']]
    ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)

    @torch.no_grad()
    def estimate_loss():
    out = {}
    model.eval()
    for split in ['train', 'val']:
    losses = torch.zeros(cfg['eval_iters'])
    for k in range(cfg['eval_iters']):
    X, Y = get_batch(split)
    with ctx:
    logits, loss = model(X, Y)
    losses[k] = loss.item()
    out[split] = losses.mean()
    model.train()
    return out

    # Learning rate decay scheduler (cosine with warmup)
    def get_lr(it):
    # Linear warmup
    if it < cfg['warmup_iters']:
    return cfg['learning_rate'] * (it + 1) / (cfg['warmup_iters'] + 1)
    # If it > lr_decay_iters, return min learning rate
    if it > cfg['lr_decay_iters']:
    return cfg['min_lr']
    # In between, use cosine decay
    decay_ratio = (it - cfg['warmup_iters']) / (cfg['lr_decay_iters'] - cfg['warmup_iters'])
    assert 0 <= decay_ratio <= 1
    coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
    return cfg['min_lr'] + coeff * (cfg['learning_rate'] - cfg['min_lr'])

    # Logging
    if cfg['wandb_log'] and master_process:
    import wandb
    wandb.init(project=cfg['wandb_project'], name=cfg['wandb_run_name'], config=cfg)

    # Training loop
    X, Y = get_batch('train')
    t0 = time.time()
    local_iter_num = 0
    raw_model = model.module if ddp else model
    running_mfu = -1.0

    while True:
    # Determine and set the learning rate for this iteration
    lr = get_lr(iter_num) if cfg['decay_lr'] else cfg['learning_rate']
    for param_group in optimizer.param_groups:
    param_group['lr'] = lr

    # Evaluate the loss on train/val sets and write checkpoints
    if iter_num % cfg['eval_interval'] == 0 and master_process:
    losses = estimate_loss()
    print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
    if cfg['wandb_log']:
    wandb.log({
    "iter": iter_num,
    "train/loss": losses['train'],
    "val/loss": losses['val'],
    "lr": lr,
    "mfu": running_mfu*100,
    })
    if losses['val'] < best_val_loss or cfg['always_save_checkpoint']:
    best_val_loss = losses['val']
    if iter_num > 0:
    checkpoint = {
    'model': raw_model.state_dict(),
    'optimizer': optimizer.state_dict(),
    'model_args': model_args,
    'iter_num': iter_num,
    'best_val_loss': best_val_loss,
    'config': cfg,
    }
    print(f"saving checkpoint to {cfg['out_dir']}")
    torch.save(checkpoint, os.path.join(cfg['out_dir'], 'ckpt.pt'))

    if iter_num == 0 and cfg['eval_only']:
    break

    # Forward backward update
    for micro_step in range(gradient_accumulation_steps):
    if ddp:
    model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
    with ctx:
    logits, loss = model(X, Y)
    loss = loss / gradient_accumulation_steps
    X, Y = get_batch('train')
    scaler.scale(loss).backward()

    # Clip gradients
    if cfg['grad_clip'] != 0.0:
    scaler.unscale_(optimizer)
    torch.nn.utils.clip_grad_norm_(model.parameters(), cfg['grad_clip'])

    # Step the optimizer
    scaler.step(optimizer)
    scaler.update()
    optimizer.zero_grad(set_to_none=True)

    # Timing and logging
    t1 = time.time()
    dt = t1 - t0
    t0 = t1
    if iter_num % cfg['log_interval'] == 0 and master_process:
    lossf = loss.item() * gradient_accumulation_steps
    if local_iter_num >= 5:
    mfu = raw_model.estimate_mfu(cfg['batch_size'] * gradient_accumulation_steps, dt)
    running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
    print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%")

    iter_num += 1
    local_iter_num += 1

    # Termination conditions
    if iter_num > cfg['max_iters']:
    break

    if ddp:
    destroy_process_group()

    # ============================================================================
    # MODAL SETUP
    # ============================================================================

    # Create Modal app
    app = modal.App("nanogpt-training")

    # Build Modal image with all dependencies
    image = (
    modal.Image.debian_slim(python_version="3.11")
    .pip_install(
    "numpy",
    "torch",
    "transformers",
    "wandb",
    "requests"
    )
    )

    # Create Modal volume for persistent storage
    volume = modal.Volume.from_name("nanogpt-data", create_if_missing=True)

    # Modal entry point function
    @app.function(
    gpu=f"{GPU_TYPE}:{N_GPUS}",
    volumes={"/data": volume},
    timeout=60 * 60 * 6, # 6 hours
    image=image,
    secrets=[modal.Secret.from_name("wandb-secret")] if CONFIG.get("wandb_log", False) else [],
    )
    def train_modal():
    """Launch distributed training on Modal"""

    print(f"Starting Modal training with {N_GPUS} {GPU_TYPE} GPUs")
    print(f"Dataset: {CONFIG['dataset']}")

    # Prepare data
    ensure_shakespeare_data("/data")

    # Copy this script to a temporary location for torchrun
    script_path = Path(__file__)
    script_content = script_path.read_text()
    temp_script = "/tmp/train_modal.py"
    Path(temp_script).write_text(script_content)

    # Launch distributed training with torchrun
    cmd = [
    "torchrun",
    f"--nproc-per-node={N_GPUS}",
    temp_script,
    ]

    print(f"Running command: {' '.join(cmd)}")

    # Change to temp directory to run
    os.chdir("/tmp")

    # Launch distributed training
    subprocess.run(cmd, check=True)

    print("Training completed successfully!")
    return "Training completed"

    # Main entry point
    if __name__ == "__main__":
    # Check if we're running under torchrun
    if "RANK" in os.environ:
    # We're running distributed - execute training
    train()
    else:
    # Not running under torchrun
    print("This script should be run with torchrun or through Modal")
    print("Examples:")
    print(" Local: torchrun --nproc-per-node=4 train_modal_standalone.py")
    print(" Modal: modal run train_modal_standalone.py::train_modal")
    sys.exit(1)