I hereby claim:
- I am tokestermw on github.
- I am motoki (https://keybase.io/motoki) on keybase.
- I have a public key whose fingerprint is 26C6 F8AB C16D 50E4 3A97 05C2 B235 7159 51D6 074D
To claim this, I am signing this object:
| 'system': | |
| [ | |
| { | |
| 'type': 'text', | |
| 'text': "You are Claude Code, Anthropic's official CLI for Claude.", | |
| 'cache_control': {'type': 'ephemeral'} | |
| }, | |
| { | |
| 'type': 'text', | |
| 'text': 'You are an interactive CLI tool that helps users with software engineering tasks. |
| # train_grpo.py | |
| # | |
| # See https://github.com/willccbb/verifiers for ongoing developments | |
| # | |
| import re | |
| import torch | |
| from datasets import load_dataset, Dataset | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from peft import LoraConfig | |
| from trl import GRPOConfig, GRPOTrainer |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| # helpers | |
| def make_unit_length(x, epsilon=1e-6): | |
| norm = x.norm(p=2, dim=-1, keepdim=True) | |
| return x.div(norm + epsilon) |
| import random | |
| def augmentation_fun(x, augment_by=3): | |
| # augment the original data point by 3 | |
| return [x + random.random() * 2 - 1 for i in range(augment_by)] | |
| def train_loop(dataset, do_augment=False): | |
| # emit one data point at a time |
| """ | |
| To use it inside ELMo script | |
| To get the embeddings: | |
| allennlp elmo sample_sents.txt out1.hdf5 --top | |
| python -c "import h5py; f = h5py.File('out1.hdf5'); print(f['0'][:], f['0'].shape)" | |
| To get probabilities: |
I hereby claim:
To claim this, I am signing this object:
Where A is a class (e.g. definite article), and B is another class (e.g. indefinite article). O is the null class.
The cat had a dog .
A O O B O O
v1
| Real | Predicted | Verdict
| import tensorflow as tf | |
| from tensorflow.python.ops.metrics_impl import _streaming_confusion_matrix | |
| # almost the same as | |
| def confusion_matrix(labels, predictions, num_classes, weights=None): | |
| total_cm, update_op = _streaming_confusion_matrix( | |
| labels, predictions, num_classes, weights=weights) |
Shortlink: goo.gl/wSuuS9
The github repository will soon be available at github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/data_generators/wikisum