Created
December 8, 2009 04:23
-
-
Save traviscj/251398 to your computer and use it in GitHub Desktop.
Revisions
-
traviscj created this gist
Dec 8, 2009 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,123 @@ #!/usr/bin/python from numpy import * import sys def forward22(uvec,vvec,xvec,tval,f,i): return f(uvec[i+1],vvec[i+1],xvec[i+1],tval)-f(uvec[i],vvec[i],xvec[i],tval) def backward22(uvec,vvec,xvec,tval,f,i): return f(uvec[i],vvec[i],xvec[i],tval)-f(uvec[i-1],vvec[i-1],xvec[i-1],tval) def mac22bf(uvec,vvec,dt,dx,fu,fv,gu,gv,xvec,t): # predict: Backward! (needs numerical BC treatment at j=N) n = len(uvec) (uhat,usol,vhat,vsol) = (zeros((n,1)),zeros((n,1)),zeros((n,1)),zeros((n,1))) #usol = zeros((n,1)) #vhat = zeros((n,1)) #vsol = zeros((n,1)) for i in range(1,n): uhat[i]=uvec[i] + dt/dx*(backward22(uvec,vvec,xvec,t,fu,i)) + dt*gu(xvec[i],t) vhat[i]=vvec[i] + dt/dx*(backward22(uvec,vvec,xvec,t,fv,i)) + dt*gv(xvec[i],t) # Extrapolate the fluxes, sir! Fum1 = 2*fu(uvec[0],vvec[0],xvec[0],t)-fu(uvec[1],vvec[1],xvec[1],t); Fvm1 = 2*fv(uvec[0],vvec[0],xvec[0],t)-fv(uvec[1],vvec[1],xvec[1],t); usol[0] = uvec[0]+ dt/dx*(Fum1 - fu(uhat[0],vhat[0],xvec[0],t)) vsol[0] = vvec[0]+ dt/dx*(Fvm1 - fv(uhat[0],vhat[0],xvec[0],t)) Funp1 = 2*fu(uvec[n-1],vvec[n-1],xvec[n-1],t)-fu(uvec[n-2],vvec[n-2],xvec[n-2],t); Fvnp1 = 2*fv(uvec[n-1],vvec[n-1],xvec[n-1],t)-fv(uvec[n-2],vvec[n-2],xvec[n-2],t); uhat[n-1]=.5*(uvec[n-1]+uvec[n-1]+dt/dx*(Funp1-fu(uvec[n-2],vvec[n-2],xvec[n-2],t))); vhat[n-1]=.5*(vvec[n-1]+vvec[n-1]+dt/dx*(Fvnp1-fv(uvec[n-2],vvec[n-2],xvec[n-2],t))); for i in range(0,n-1): usol[i] = .5*(uvec[i]+uhat[i] + dt/dx*(forward22(uhat,vhat,xvec,t,fu,i)) + dt*gu(xvec[i],t)) vsol[i] = .5*(vvec[i]+vhat[i] + dt/dx*(forward22(uhat,vhat,xvec,t,fv,i)) + dt*gv(xvec[i],t)) # characteristic boundary conditions. (usol[0],vsol[0]) = (.5*(usol[0]+vsol[0]),.5*(usol[0]+vsol[0])) (usol[n-1],vsol[n-1])=(.5*(usol[n-1]+vsol[n-1]),-.5*(usol[n-1]+vsol[n-1])) return [usol, vsol] def mac22fb(uvec,vvec,dt,dx,fu,fv,gu,gv,xvec,t): # predict: Foward! (needs numerical BC treatment at j=N) n=len(uvec) (uhat,usol,vhat,vsol) = (zeros((n,1)),zeros((n,1)),zeros((n,1)),zeros((n,1))) for i in range(0,n-1): uhat[i]=uvec[i] + dt/dx*(forward22(uvec,vvec,xvec,t,fu,i)) + dt*gu(xvec[i],t) vhat[i]=vvec[i] + dt/dx*(forward22(uvec,vvec,xvec,t,fv,i)) + dt*gv(xvec[i],t) # Extrapolate the fluxes, sir! Funp1 = 2*fu(uvec[n-1],vvec[n-1],xvec[n-1],t)-fu(uvec[n-2],vvec[n-2],xvec[n-2],t); Fvnp1 = 2*fv(uvec[n-1],vvec[n-1],xvec[n-1],t)-fv(uvec[n-2],vvec[n-2],xvec[n-2],t); uhat[n-1]=uvec[n-1]+dt/dx*(Funp1-fu(uvec[n-2],vvec[n-2],xvec[n-2],t)); vhat[n-1]=vvec[n-1]+dt/dx*(Fvnp1-fv(uvec[n-2],vvec[n-2],xvec[n-2],t)); Fum1 = 2*fu(uhat[0],vhat[0],xvec[0],t)-fu(uhat[1],vhat[1],xvec[1],t); Fvm1 = 2*fv(uhat[0],vhat[0],xvec[0],t)-fv(uhat[1],vhat[1],xvec[1],t); usol[0] = .5*(uvec[0]+uhat[0] + dt/dx*(Fum1 - fu(uhat[0],vhat[0],xvec[0],t))) vsol[0] = .5*(vvec[0]+vhat[0] + dt/dx*(Fvm1 - fv(uhat[0],vhat[0],xvec[0],t))) for i in range(1,n): usol[i] = .5*(uvec[i]+uhat[i] + dt/dx*(backward22(uhat,vhat,xvec,t,fu,i)) + dt*gu(xvec[i],t)) vsol[i] = .5*(vvec[i]+vhat[i] + dt/dx*(backward22(uhat,vhat,xvec,t,fv,i)) + dt*gv(xvec[i],t)) # characteristic boundary conditions. (usol[0],vsol[0]) = (.5*(usol[0]+vsol[0]),.5*(usol[0]+vsol[0])) (usol[n-1],vsol[n-1])=(.5*(usol[n-1]+vsol[n-1]),-.5*(usol[n-1]+vsol[n-1])) return [usol, vsol] def mac22(FU,FV,GU,GV, tMax, N, cMax, fName_append): CFL=.95; #cMax=3; N = 1000 x = linspace(-30*pi,30*pi,N); dx=x[1]-x[0] dt = CFL*dx/cMax t = linspace(0,tMax,tMax/dt);M = len(t) uvec=zeros((N,1)) vvec=zeros((N,1)) usol=zeros((M,N)) vsol=zeros((M,N)) Mstep = M/40; for n in range(0,M-1): if n%2==1: onestep = mac22fb(usol[n,:],vsol[n,:],dt,dx,FU,FV,GU,GV,x,t[n]) else: onestep = mac22bf(usol[n,:],vsol[n,:],dt,dx,FU,FV,GU,GV,x,t[n]) usol[n+1,:] = onestep[0].T vsol[n+1,:] = onestep[1].T if n>Mstep: Mstep += M/40 sys.stdout.write(".") sys.stdout.flush() print("done") savetxt('usol_%s.csv'%fName_append, usol, fmt='%.6f', delimiter=';') savetxt('vsol_%s.csv'%fName_append, vsol, fmt='%.6f', delimiter=';') def conservlaw(uval,vval, x,t, mode,F): if mode == 1: c1=c2=1 return F(c1,c2,uval,vval) elif mode==2: if abs(x) < 10*pi: c1=c2=1 return F(c1,c2,uval,vval) else: c1=c2=3 return F(c1,c2,uval,vval) elif mode==3: if abs(x) < 10*pi: c1=c2=1 return F(c1,c2,uval,vval) else: c1=c2=1.001 return F(c1,c2,uval,vval) ### Conti sigma=2; MODE=int(sys.argv[1]) FU = lambda uval,vval, x, t: conservlaw(uval,vval, x, t, MODE, lambda c1,c2,uval,vval: (c1-c2)/2*uval + (c1+c2)/2*vval) GU = lambda x,t: exp(-sigma*x**2/2)*exp(-sigma**2*t**2/2) GV = lambda x,t: 0 if MODE==1: FV = lambda uval,vval, x, t: conservlaw(uval,vval, x, t, MODE, lambda c1,c2,uval,vval: (c1+c2)/2*uval + (c1-c2)/2*vval) mac22(FU,FV,GU,GV, 100, 1000, 1, 'mode1') if MODE==2: FV = lambda uval,vval, x, t: conservlaw(uval,vval, x, t, MODE, lambda c1,c2,uval,vval: uval + (c1-c2)/2*vval) mac22(FU,FV,GU,GV, 60, 3000, 3, 'mode2') if MODE==3: FV = lambda uval,vval, x, t: conservlaw(uval,vval, x, t, MODE, lambda c1,c2,uval,vval: uval + (c1-c2)/2*vval) mac22(FU,FV,GU,GV, 60, 3000, 1.001, 'mode3')