Created
March 10, 2022 15:56
-
-
Save tsferro2/bb331ddaad5e0dba0d6294124b90aa47 to your computer and use it in GitHub Desktop.
Revisions
-
tsferro2 created this gist
Mar 10, 2022 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,38 @@ import math import numpy as np import numpy.random as npr from pylab import plt, mpl # Square-Root Diffusion (mean-reverting process)------------------------------- # widely used for short rates & volatility x0 = 1.00 # starting value kappa = 3.0 # mean-reversion paramater theta = 1.00 # long term mean sigma = 0.1 I = 10000 M = 365 dt = T / M def srd_euler(): xh = np.zeros((M + 1, I)) x = np.zeros_like(xh) xh[0] = x0 x[0] = x0 for t in range(1, M + 1): xh[t] = (xh[t - 1] + kappa * (theta - np.maximum(xh[t - 1], 0)) * dt + sigma * np.sqrt(np.maximum(xh[t - 1], 0)) * math.sqrt(dt) * npr.standard_normal(I)) x = np.maximum(xh, 0) return x x1 = srd_euler() plt.figure(figsize=(10, 6)) plt.hist(x1[-1], bins=50) plt.xlabel('value') plt.ylabel('frequency'); plt.figure(figsize=(10, 6)) plt.plot(x1[:, :10], lw=1.5) plt.xlabel('time') plt.ylabel('index level');