Created
          March 26, 2022 17:46 
        
      - 
      
- 
        Save tsferro2/e42bc664b66032e8762861bcf68ce668 to your computer and use it in GitHub Desktop. 
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | # MOMENTUM | |
| data['ADX'] = ta.ADX(data.High.values, data.Low.values,data.Close.values) | |
| data['ADXR'] = ta.ADXR(data.High.values, data.Low.values,data.Close.values) | |
| data['APO'] = ta.APO(data.Close.values) | |
| data['AROONdown'],data['AROONup'] = ta.AROON(data.High.values, data.Low.values) | |
| data['AROONdmu'] = data['AROONdown'] - data['AROONup'] | |
| data['AROONOSC'] = ta.AROONOSC(data.High.values, data.Low.values) | |
| data['BOP'] = ta.BOP(data.Open.values,data.High.values, data.Low.values,data.Close.values) | |
| data['CCI'] = ta.CCI(data.High.values, data.Low.values,data.Close.values) | |
| data['CMO'] = ta.CMO(data.Close.values) | |
| data['DX'] = ta.DX(data.High.values, data.Low.values,data.Close.values) | |
| data['macd'],data['macdsignal'],data['macdhist'] = ta.MACD(data.Close.values) | |
| data['macdFIX'],data['macdsignalFIX'],data['macdhistFIX'] = ta.MACDFIX(data.Close.values) | |
| data['MFI'] = ta.MFI(data.High.values,data.Low.values, data.Close.values,data.Volume.values.astype(float)) | |
| data['MINUS_DI'] = ta.MINUS_DI(data.High.values, data.Low.values,data.Close.values) | |
| data['MINUS_DM'] = ta.MINUS_DM(data.High.values, data.Low.values) | |
| data['MOM'] = ta.MOM(data.Close.values) | |
| data['PLUS_DI'] = ta.PLUS_DI(data.High.values, data.Low.values,data.Close.values) | |
| data['PLUS_DM'] = ta.PLUS_DM(data.High.values, data.Low.values) | |
| data['PPO'] = ta.PPO(data.Close.values) | |
| data['ROC'] = ta.ROC(data.Close.values) | |
| data['ROCP'] = ta.ROCP(data.Close.values) | |
| data['ROCR100'] = ta.ROCR100(data.Close.values) | |
| data['RSI'] = ta.RSI(data.Close.values,14) | |
| data['sLowk'],data['sLowd'] = ta.STOCH(data.High.values, data.Low.values,data.Close.values) | |
| data['STOCHkmdSLow'] = data['sLowk'] - data['sLowd'] | |
| data['fastk'],data['fastd'] = ta.STOCHF(data.High.values, data.Low.values,data.Close.values) | |
| data['STOCHkmdFast'] = data['fastk'] - data['fastd'] | |
| data['sLowkRSI'],data['sLowdRSI'] = ta.STOCHRSI(data.Close.values) | |
| data['STOCKkmdRSI'] = data['sLowkRSI'] - data['sLowdRSI'] | |
| data['TRIX'] = ta.TRIX(data.Close.values) | |
| data['ULTOSC'] = ta.ULTOSC(data.High.values, data.Low.values,data.Close.values) | |
| data['WILLR'] = ta.WILLR(data.High.values, data.Low.values,data.Close.values) | |
| # Volume | |
| data['AD'] = ta.AD(data.High.values,data.Low.values, data.Close.values,data.Volume.values.astype(float)) | |
| data['ADOSC'] = ta.ADOSC(data.High.values,data.Low.values, data.Close.values,data.Volume.values.astype(float)) | |
| data['OBV'] = ta.OBV(data.Close.values,data.Volume.values.astype(float)) | |
| #VOLATILITY | |
| data['ATR63'] = ta.ATR(data.High.values, data.Low.values,data.Close.values,63) | |
| data['ATR'] = ta.ATR(data.High.values, data.Low.values,data.Close.values) | |
| data['NATR'] = ta.NATR(data.High.values, data.Low.values,data.Close.values) | |
| # CYCLES | |
| data['HT_DCPERIOD'] = ta.HT_DCPERIOD(data.Close.values) | |
| data['HT_DCPHASE'] = ta.HT_DCPHASE(data.Close.values) | |
| data['inphase'],data['quadrature'] = ta.HT_PHASOR(data.Close.values) | |
| data['sine'],data['leadsine'] = ta.HT_SINE(data.Close.values) | |
| data['sls'] = data['sine'] - data['leadsine'] | |
| data['HT_TRENDMODE'] = ta.HT_TRENDMODE(data.Close.values) | |
| # PRICE-ACTION | |
| data['C/O'] = data.Close / data.Open -1 | |
| data['H/L'] = data.High / data.Low -1 | |
| data['C/L'] = data.Close / data.Low -1 | |
| data['H/Lt'] = data.High / data.Low.shift() -1 | |
| data['L/Lt'] = data.Low / data.Low.shift() -1 | |
| data['H/Ht2'] = data.High / data.High.shift(2) -1 | |
| data['H/Lt3'] = data.High / data.Low.shift(3) -1 | |
| data['L/Lt3'] = data.Low / data.Low.shift() -1 | |
| data['C/Ct2'] = data.Close / data.Close.shift(2) -1 | |
| data['C/Ct3'] = data.Close / data.Close.shift(3) -1 | |
| data['returns'] = np.log(data['Close'] / data['Close'] .shift()) | |
| data['direction'] = np.where(data['returns'] > 0, 1, 0) | |
| # return bins | |
| bins = list(np.linspace(-0.02, 0.02, 4)) | |
| data['direction_bins'] = np.digitize(data['returns'], bins=bins) | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment