Created
March 10, 2022 15:51
-
-
Save tsferro2/f0dca2ebde8e83c787db422cdffa9c2c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import math | |
| import numpy as np | |
| import numpy.random as npr | |
| from pylab import plt, mpl | |
| # Geometric Brownian Motion (granual/steps) | |
| S0 = 100 # starting price | |
| r = 0.05 # short rate | |
| sigma = 0.25 # vol | |
| I = 10000 # simulations | |
| M = 50 # steps per sim | |
| dt = T / M | |
| S = np.zeros((M + 1, I)) | |
| S[0] = S0 | |
| for t in range(1, M + 1): | |
| S[t] = S[t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt + | |
| sigma * math.sqrt(dt) * npr.standard_normal(I)) | |
| plt.figure(figsize=(10, 6)) | |
| plt.hist(S[-1], bins=50) | |
| plt.xlabel('index level') | |
| plt.ylabel('frequency'); | |
| plt.figure(figsize=(10, 6)) | |
| plt.plot(S[:, :10], lw=1.5) | |
| plt.xlabel('time') | |
| plt.ylabel('index level'); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment