Last active
March 13, 2022 17:06
-
-
Save ttamg/a1f3c347b829ef9715e65c24d49eb26c to your computer and use it in GitHub Desktop.
Revisions
-
ttamg revised this gist
Mar 13, 2022 . 1 changed file with 2 additions and 1 deletion.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -1,4 +1,5 @@ # tensorflow_mnist.py # A simple Tensorflow 2 MNIST training script to test installation is working correctly. import tensorflow as tf import tensorflow_datasets as tfds -
ttamg created this gist
Mar 13, 2022 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,46 @@ """ A simple Tensorflow 2 MNIST training script to test installation is working correctly. """ import tensorflow as tf import tensorflow_datasets as tfds (ds_train, ds_test), ds_info = tfds.load( 'mnist', split=['train', 'test'], shuffle_files=True, as_supervised=True, with_info=True, ) def normalize_img(image, label): """Normalizes images: `uint8` -> `float32`.""" return tf.cast(image, tf.float32) / 255., label ds_train = ds_train.map( normalize_img, num_parallel_calls=tf.data.AUTOTUNE) ds_train = ds_train.cache() ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples) ds_train = ds_train.batch(128) ds_train = ds_train.prefetch(tf.data.AUTOTUNE) ds_test = ds_test.map( normalize_img, num_parallel_calls=tf.data.AUTOTUNE) ds_test = ds_test.batch(128) ds_test = ds_test.cache() ds_test = ds_test.prefetch(tf.data.AUTOTUNE) model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10) ]) model.compile( optimizer=tf.keras.optimizers.Adam(0.001), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[tf.keras.metrics.SparseCategoricalAccuracy()], ) model.fit( ds_train, epochs=6, validation_data=ds_test, )