Skip to content

Instantly share code, notes, and snippets.

@vii1
Created March 21, 2024 11:40
Show Gist options
  • Select an option

  • Save vii1/dde6a6cefceae1fb27dc4149ab6bb319 to your computer and use it in GitHub Desktop.

Select an option

Save vii1/dde6a6cefceae1fb27dc4149ab6bb319 to your computer and use it in GitHub Desktop.

Revisions

  1. vii1 created this gist Mar 21, 2024.
    270 changes: 270 additions & 0 deletions turbocolormap.sci
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,270 @@
    // Turbo colormap by Anton Mikhailov
    // Paper: https://blog.research.google/2019/08/turbo-improved-rainbow-colormap-for.html
    // Based on https://gist.github.com/mikhailov-work/ee72ba4191942acecc03fe6da94fc73f

    function cmap = turbocolormap(n)
    turbo_colormap_data = [
    0.18995 0.07176 0.23217
    0.19483 0.08339 0.26149
    0.19956 0.09498 0.29024
    0.20415 0.10652 0.31844
    0.20860 0.11802 0.34607
    0.21291 0.12947 0.37314
    0.21708 0.14087 0.39964
    0.22111 0.15223 0.42558
    0.22500 0.16354 0.45096
    0.22875 0.17481 0.47578
    0.23236 0.18603 0.50004
    0.23582 0.19720 0.52373
    0.23915 0.20833 0.54686
    0.24234 0.21941 0.56942
    0.24539 0.23044 0.59142
    0.24830 0.24143 0.61286
    0.25107 0.25237 0.63374
    0.25369 0.26327 0.65406
    0.25618 0.27412 0.67381
    0.25853 0.28492 0.69300
    0.26074 0.29568 0.71162
    0.26280 0.30639 0.72968
    0.26473 0.31706 0.74718
    0.26652 0.32768 0.76412
    0.26816 0.33825 0.78050
    0.26967 0.34878 0.79631
    0.27103 0.35926 0.81156
    0.27226 0.36970 0.82624
    0.27334 0.38008 0.84037
    0.27429 0.39043 0.85393
    0.27509 0.40072 0.86692
    0.27576 0.41097 0.87936
    0.27628 0.42118 0.89123
    0.27667 0.43134 0.90254
    0.27691 0.44145 0.91328
    0.27701 0.45152 0.92347
    0.27698 0.46153 0.93309
    0.27680 0.47151 0.94214
    0.27648 0.48144 0.95064
    0.27603 0.49132 0.95857
    0.27543 0.50115 0.96594
    0.27469 0.51094 0.97275
    0.27381 0.52069 0.97899
    0.27273 0.53040 0.98461
    0.27106 0.54015 0.98930
    0.26878 0.54995 0.99303
    0.26592 0.55979 0.99583
    0.26252 0.56967 0.99773
    0.25862 0.57958 0.99876
    0.25425 0.58950 0.99896
    0.24946 0.59943 0.99835
    0.24427 0.60937 0.99697
    0.23874 0.61931 0.99485
    0.23288 0.62923 0.99202
    0.22676 0.63913 0.98851
    0.22039 0.64901 0.98436
    0.21382 0.65886 0.97959
    0.20708 0.66866 0.97423
    0.20021 0.67842 0.96833
    0.19326 0.68812 0.96190
    0.18625 0.69775 0.95498
    0.17923 0.70732 0.94761
    0.17223 0.71680 0.93981
    0.16529 0.72620 0.93161
    0.15844 0.73551 0.92305
    0.15173 0.74472 0.91416
    0.14519 0.75381 0.90496
    0.13886 0.76279 0.89550
    0.13278 0.77165 0.88580
    0.12698 0.78037 0.87590
    0.12151 0.78896 0.86581
    0.11639 0.79740 0.85559
    0.11167 0.80569 0.84525
    0.10738 0.81381 0.83484
    0.10357 0.82177 0.82437
    0.10026 0.82955 0.81389
    0.09750 0.83714 0.80342
    0.09532 0.84455 0.79299
    0.09377 0.85175 0.78264
    0.09287 0.85875 0.77240
    0.09267 0.86554 0.76230
    0.09320 0.87211 0.75237
    0.09451 0.87844 0.74265
    0.09662 0.88454 0.73316
    0.09958 0.89040 0.72393
    0.10342 0.89600 0.71500
    0.10815 0.90142 0.70599
    0.11374 0.90673 0.69651
    0.12014 0.91193 0.68660
    0.12733 0.91701 0.67627
    0.13526 0.92197 0.66556
    0.14391 0.92680 0.65448
    0.15323 0.93151 0.64308
    0.16319 0.93609 0.63137
    0.17377 0.94053 0.61938
    0.18491 0.94484 0.60713
    0.19659 0.94901 0.59466
    0.20877 0.95304 0.58199
    0.22142 0.95692 0.56914
    0.23449 0.96065 0.55614
    0.24797 0.96423 0.54303
    0.26180 0.96765 0.52981
    0.27597 0.97092 0.51653
    0.29042 0.97403 0.50321
    0.30513 0.97697 0.48987
    0.32006 0.97974 0.47654
    0.33517 0.98234 0.46325
    0.35043 0.98477 0.45002
    0.36581 0.98702 0.43688
    0.38127 0.98909 0.42386
    0.39678 0.99098 0.41098
    0.41229 0.99268 0.39826
    0.42778 0.99419 0.38575
    0.44321 0.99551 0.37345
    0.45854 0.99663 0.36140
    0.47375 0.99755 0.34963
    0.48879 0.99828 0.33816
    0.50362 0.99879 0.32701
    0.51822 0.99910 0.31622
    0.53255 0.99919 0.30581
    0.54658 0.99907 0.29581
    0.56026 0.99873 0.28623
    0.57357 0.99817 0.27712
    0.58646 0.99739 0.26849
    0.59891 0.99638 0.26038
    0.61088 0.99514 0.25280
    0.62233 0.99366 0.24579
    0.63323 0.99195 0.23937
    0.64362 0.98999 0.23356
    0.65394 0.98775 0.22835
    0.66428 0.98524 0.22370
    0.67462 0.98246 0.21960
    0.68494 0.97941 0.21602
    0.69525 0.97610 0.21294
    0.70553 0.97255 0.21032
    0.71577 0.96875 0.20815
    0.72596 0.96470 0.20640
    0.73610 0.96043 0.20504
    0.74617 0.95593 0.20406
    0.75617 0.95121 0.20343
    0.76608 0.94627 0.20311
    0.77591 0.94113 0.20310
    0.78563 0.93579 0.20336
    0.79524 0.93025 0.20386
    0.80473 0.92452 0.20459
    0.81410 0.91861 0.20552
    0.82333 0.91253 0.20663
    0.83241 0.90627 0.20788
    0.84133 0.89986 0.20926
    0.85010 0.89328 0.21074
    0.85868 0.88655 0.21230
    0.86709 0.87968 0.21391
    0.87530 0.87267 0.21555
    0.88331 0.86553 0.21719
    0.89112 0.85826 0.21880
    0.89870 0.85087 0.22038
    0.90605 0.84337 0.22188
    0.91317 0.83576 0.22328
    0.92004 0.82806 0.22456
    0.92666 0.82025 0.22570
    0.93301 0.81236 0.22667
    0.93909 0.80439 0.22744
    0.94489 0.79634 0.22800
    0.95039 0.78823 0.22831
    0.95560 0.78005 0.22836
    0.96049 0.77181 0.22811
    0.96507 0.76352 0.22754
    0.96931 0.75519 0.22663
    0.97323 0.74682 0.22536
    0.97679 0.73842 0.22369
    0.98000 0.73000 0.22161
    0.98289 0.72140 0.21918
    0.98549 0.71250 0.21650
    0.98781 0.70330 0.21358
    0.98986 0.69382 0.21043
    0.99163 0.68408 0.20706
    0.99314 0.67408 0.20348
    0.99438 0.66386 0.19971
    0.99535 0.65341 0.19577
    0.99607 0.64277 0.19165
    0.99654 0.63193 0.18738
    0.99675 0.62093 0.18297
    0.99672 0.60977 0.17842
    0.99644 0.59846 0.17376
    0.99593 0.58703 0.16899
    0.99517 0.57549 0.16412
    0.99419 0.56386 0.15918
    0.99297 0.55214 0.15417
    0.99153 0.54036 0.14910
    0.98987 0.52854 0.14398
    0.98799 0.51667 0.13883
    0.98590 0.50479 0.13367
    0.98360 0.49291 0.12849
    0.98108 0.48104 0.12332
    0.97837 0.46920 0.11817
    0.97545 0.45740 0.11305
    0.97234 0.44565 0.10797
    0.96904 0.43399 0.10294
    0.96555 0.42241 0.09798
    0.96187 0.41093 0.09310
    0.95801 0.39958 0.08831
    0.95398 0.38836 0.08362
    0.94977 0.37729 0.07905
    0.94538 0.36638 0.07461
    0.94084 0.35566 0.07031
    0.93612 0.34513 0.06616
    0.93125 0.33482 0.06218
    0.92623 0.32473 0.05837
    0.92105 0.31489 0.05475
    0.91572 0.30530 0.05134
    0.91024 0.29599 0.04814
    0.90463 0.28696 0.04516
    0.89888 0.27824 0.04243
    0.89298 0.26981 0.03993
    0.88691 0.26152 0.03753
    0.88066 0.25334 0.03521
    0.87422 0.24526 0.03297
    0.86760 0.23730 0.03082
    0.86079 0.22945 0.02875
    0.85380 0.22170 0.02677
    0.84662 0.21407 0.02487
    0.83926 0.20654 0.02305
    0.83172 0.19912 0.02131
    0.82399 0.19182 0.01966
    0.81608 0.18462 0.01809
    0.80799 0.17753 0.01660
    0.79971 0.17055 0.01520
    0.79125 0.16368 0.01387
    0.78260 0.15693 0.01264
    0.77377 0.15028 0.01148
    0.76476 0.14374 0.01041
    0.75556 0.13731 0.00942
    0.74617 0.13098 0.00851
    0.73661 0.12477 0.00769
    0.72686 0.11867 0.00695
    0.71692 0.11268 0.00629
    0.70680 0.10680 0.00571
    0.69650 0.10102 0.00522
    0.68602 0.09536 0.00481
    0.67535 0.08980 0.00449
    0.66449 0.08436 0.00424
    0.65345 0.07902 0.00408
    0.64223 0.07380 0.00401
    0.63082 0.06868 0.00401
    0.61923 0.06367 0.00410
    0.60746 0.05878 0.00427
    0.59550 0.05399 0.00453
    0.58336 0.04931 0.00486
    0.57103 0.04474 0.00529
    0.55852 0.04028 0.00579
    0.54583 0.03593 0.00638
    0.53295 0.03169 0.00705
    0.51989 0.02756 0.00780
    0.50664 0.02354 0.00863
    0.49321 0.01963 0.00955
    0.47960 0.01583 0.01055
    ]
    grid = linspace(0,1,256)
    gridn = linspace(0,1,n)
    r = linear_interpn(gridn, grid, turbo_colormap_data(:,1))
    g = linear_interpn(gridn, grid, turbo_colormap_data(:,2))
    b = linear_interpn(gridn, grid, turbo_colormap_data(:,3))
    cmap = [r', g', b']
    endfunction