-
-
Save vyraun/37121ad3e9bc24e306c00a15a9fa5e05 to your computer and use it in GitHub Desktop.
Revisions
-
ajbrock created this gist
Nov 13, 2017 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,16 @@ # PyTorch code For implementing the mixture of softmaxes layer from # "Breaking the Softmax Bottleneck: A High-Rank RNN Language Model" # https://arxiv.org/abs/1711.03953 context = self.fc(out) # Non-log version priors = F.softmax(context[:,-self.n_components:]) mixtures = torch.stack([priors[:,i].unsqueeze(1) * F.softmax(context[:, i * self.nClasses : (i + 1) * self.nClasses]) for i in range(self.n_components)],1) out = torch.log(mixtures.sum(1)) # Log version # log_priors = F.log_softmax(context[:,-self.num_components:]).unsqueeze(2) # log_mixtures = torch.stack([F.log_softmax(context[:, i * self.nClasses : (i + 1) * self.nClasses]) for i in range(num_components)],1) # log_priors = F.log_softmax(context[:,-self.num_components:]) # log_mixtures = torch.stack([log_priors[:,i] + F.log_softmax(context[:, i * self.nClasses : (i + 1) * self.nClasses]) for i in range(num_components)],1) # out = torch.log(torch.exp(log_priors + log_mixtures).sum(1))