-
-
Save vyraun/3ee965a2aa0743ffc884c0dcccc31448 to your computer and use it in GitHub Desktop.
Revisions
-
willccbb revised this gist
Jan 29, 2025 . 1 changed file with 41 additions and 17 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -1,7 +1,8 @@ # train_grpo.py import re import torch from datasets import load_dataset, Dataset from transformers import AutoTokenizer, AutoModelForCausalLM from peft import LoraConfig from trl import GRPOConfig, GRPOTrainer @@ -37,16 +38,17 @@ def extract_hash_answer(text: str) -> str | None: return None return text.split("####")[1].strip() # uncomment middle messages for 1-shot prompting def get_gsm8k_questions(split = "train") -> Dataset: data = load_dataset('openai/gsm8k', 'main')[split] # type: ignore data = data.map(lambda x: { # type: ignore 'prompt': [ {'role': 'system', 'content': SYSTEM_PROMPT}, #{'role': 'user', 'content': 'What is the largest single-digit prime number?'}, #{'role': 'assistant', 'content': XML_COT_FORMAT.format( # reasoning="9 is divisble by 3 and 8 is divisible by 2, but 7 is prime.", # answer="7" #)}, {'role': 'user', 'content': x['question']} ], 'answer': extract_hash_answer(x['answer']) @@ -81,7 +83,7 @@ def soft_format_reward_func(completions, **kwargs) -> list[float]: responses = [completion[0]["content"] for completion in completions] matches = [re.match(pattern, r) for r in responses] return [0.5 if match else 0.0 for match in matches] def count_xml(text) -> float: count = 0.0 if text.count("<reasoning>\n") == 1: @@ -100,21 +102,35 @@ def xmlcount_reward_func(completions, **kwargs) -> list[float]: contents = [completion[0]["content"] for completion in completions] return [count_xml(c) for c in contents] #model_name = "meta-llama/Llama-3.2-1B-Instruct" model_name = "Qwen/Qwen2.5-1.5B-Instruct" if "Llama" in model_name: output_dir = "outputs/Llama-1B-GRPO" run_name = "Llama-1B-GRPO-gsm8k" else: output_dir="outputs/Qwen-1.5B-GRPO" run_name="Qwen-1.5B-GRPO-gsm8k" training_args = GRPOConfig( output_dir=output_dir, run_name=run_name, learning_rate=5e-6, adam_beta1 = 0.9, adam_beta2 = 0.99, weight_decay = 0.1, warmup_ratio = 0.1, lr_scheduler_type='cosine', logging_steps=1, bf16=True, per_device_train_batch_size=1, gradient_accumulation_steps=4, num_generations=16, max_prompt_length=256, max_completion_length=786, num_train_epochs=1, save_steps=100, max_grad_norm=0.1, report_to="wandb", log_on_each_node=False, ) @@ -125,11 +141,19 @@ def xmlcount_reward_func(completions, **kwargs) -> list[float]: task_type="CAUSAL_LM", lora_dropout=0.05, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map=None ).to("cuda") tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token # use peft at your own risk; not working for me with multi-GPU training trainer = GRPOTrainer( model=model, processing_class=tokenizer, reward_funcs=[ xmlcount_reward_func, -
willccbb revised this gist
Jan 27, 2025 . 1 changed file with 2 additions and 2 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -125,8 +125,8 @@ def xmlcount_reward_func(completions, **kwargs) -> list[float]: task_type="CAUSAL_LM", lora_dropout=0.05, ) model_name = "meta-llama/Llama-3.2-1B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token trainer = GRPOTrainer( model=model_name, -
willccbb revised this gist
Jan 27, 2025 . 1 changed file with 0 additions and 1 deletion.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -61,7 +61,6 @@ def correctness_reward_func(prompts, completions, answer, **kwargs) -> list[floa q = prompts[0][-1]['content'] extracted_responses = [extract_xml_answer(r) for r in responses] print('-'*20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}") return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)] def int_reward_func(completions, **kwargs) -> list[float]: -
willccbb revised this gist
Jan 27, 2025 . 1 changed file with 28 additions and 7 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -8,7 +8,7 @@ # Load and prep dataset SYSTEM_PROMPT = """ Respond in the following format: <reasoning> ... @@ -18,6 +18,15 @@ </answer> """ XML_COT_FORMAT = """\ <reasoning> {reasoning} </reasoning> <answer> {answer} </answer> """ def extract_xml_answer(text: str) -> str: answer = text.split("<answer>")[-1] answer = answer.split("</answer>")[0] @@ -33,6 +42,11 @@ def get_gsm8k_questions(split = "train") -> Dataset: data = data.map(lambda x: { # type: ignore 'prompt': [ {'role': 'system', 'content': SYSTEM_PROMPT}, {'role': 'user', 'content': 'What is the largest single-digit prime number?'}, {'role': 'assistant', 'content': XML_COT_FORMAT.format( reasoning="9 is divisble by 3 and 8 is divisible by 2, but 7 is prime.", answer="7" )}, {'role': 'user', 'content': x['question']} ], 'answer': extract_hash_answer(x['answer']) @@ -77,24 +91,31 @@ def count_xml(text) -> float: count += 0.125 if text.count("\n<answer>\n") == 1: count += 0.125 count -= len(text.split("\n</answer>\n")[-1])*0.001 if text.count("\n</answer>") == 1: count += 0.125 count -= (len(text.split("\n</answer>")[-1]) - 1)*0.001 return count def xmlcount_reward_func(completions, **kwargs) -> list[float]: contents = [completion[0]["content"] for completion in completions] return [count_xml(c) for c in contents] training_args = GRPOConfig( output_dir="outputs/Llama-1B-base-GRPO", run_name="Llama-1B-base-GRPO-gsm8k", learning_rate=1e-6, adam_beta1 = 0.9, adam_beta2 = 0.95, weight_decay = 0.1, warmup_ratio = 0.1, lr_scheduler_type='cosine', logging_steps=1, per_device_train_batch_size=1, gradient_accumulation_steps=6, num_generations=12, max_completion_length=512, max_grad_norm=0.01, report_to="wandb", log_on_each_node=False, ) @@ -105,8 +126,8 @@ def xmlcount_reward_func(completions, **kwargs) -> list[float]: task_type="CAUSAL_LM", lora_dropout=0.05, ) model_name = "meta-llama/Llama-3.2-1B" tokenizer = AutoTokenizer.from_pretrained(model_name + "-Instruct") tokenizer.pad_token = tokenizer.eos_token trainer = GRPOTrainer( model=model_name, -
willccbb revised this gist
Jan 26, 2025 . 1 changed file with 2 additions and 1 deletion.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -1,4 +1,4 @@ # train_grpo.py import re from datasets import load_dataset, Dataset from transformers import AutoTokenizer @@ -94,6 +94,7 @@ def xmlcount_reward_func(completions, **kwargs) -> list[float]: gradient_accumulation_steps=6, num_generations=12, max_completion_length=512, max_grad_norm=0.001, report_to="wandb", log_on_each_node=False, ) -
willccbb created this gist
Jan 26, 2025 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,123 @@ # grpo_demo.py import re from datasets import load_dataset, Dataset from transformers import AutoTokenizer from peft import LoraConfig from trl import GRPOConfig, GRPOTrainer # Load and prep dataset SYSTEM_PROMPT = """ Respond the in the following format: <reasoning> ... </reasoning> <answer> ... </answer> """ def extract_xml_answer(text: str) -> str: answer = text.split("<answer>")[-1] answer = answer.split("</answer>")[0] return answer.strip() def extract_hash_answer(text: str) -> str | None: if "####" not in text: return None return text.split("####")[1].strip() def get_gsm8k_questions(split = "train") -> Dataset: data = load_dataset('openai/gsm8k', 'main')[split] # type: ignore data = data.map(lambda x: { # type: ignore 'prompt': [ {'role': 'system', 'content': SYSTEM_PROMPT}, {'role': 'user', 'content': x['question']} ], 'answer': extract_hash_answer(x['answer']) }) # type: ignore return data # type: ignore dataset = get_gsm8k_questions() # Reward functions def correctness_reward_func(prompts, completions, answer, **kwargs) -> list[float]: responses = [completion[0]['content'] for completion in completions] q = prompts[0][-1]['content'] extracted_responses = [extract_xml_answer(r) for r in responses] print('-'*20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}") responses = [extract_xml_answer(r) for r in responses] return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)] def int_reward_func(completions, **kwargs) -> list[float]: responses = [completion[0]['content'] for completion in completions] extracted_responses = [extract_xml_answer(r) for r in responses] return [0.5 if r.isdigit() else 0.0 for r in extracted_responses] def strict_format_reward_func(completions, **kwargs) -> list[float]: """Reward function that checks if the completion has a specific format.""" pattern = r"^<reasoning>\n.*?\n</reasoning>\n<answer>\n.*?\n</answer>\n$" responses = [completion[0]["content"] for completion in completions] matches = [re.match(pattern, r) for r in responses] return [0.5 if match else 0.0 for match in matches] def soft_format_reward_func(completions, **kwargs) -> list[float]: """Reward function that checks if the completion has a specific format.""" pattern = r"<reasoning>.*?</reasoning>\s*<answer>.*?</answer>" responses = [completion[0]["content"] for completion in completions] matches = [re.match(pattern, r) for r in responses] return [0.5 if match else 0.0 for match in matches] def count_xml(text) -> float: count = 0.0 if text.count("<reasoning>\n") == 1: count += 0.125 if text.count("\n</reasoning>\n") == 1: count += 0.125 if text.count("\n<answer>\n") == 1: count += 0.125 if text.count("\n</answer>") == 1: count += 0.125 return count def xmlcount_reward_func(completions, **kwargs) -> list[float]: contents = [completion[0]["content"] for completion in completions] return [count_xml(c) for c in contents] training_args = GRPOConfig( output_dir="outputs/Llama-1B-GRPO", run_name="Llama-1B-GRPO-gsm8k", learning_rate=3e-6, logging_steps=1, per_device_train_batch_size=1, gradient_accumulation_steps=6, num_generations=12, max_completion_length=512, report_to="wandb", log_on_each_node=False, ) peft_config = LoraConfig( r=16, lora_alpha=64, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "down_proj", "gate_proj"], task_type="CAUSAL_LM", lora_dropout=0.05, ) model_name = "meta-llama/Llama-3.2-1B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token trainer = GRPOTrainer( model=model_name, processing_class=tokenizer, reward_funcs=[ xmlcount_reward_func, soft_format_reward_func, strict_format_reward_func, int_reward_func, correctness_reward_func], args=training_args, train_dataset=dataset, #peft_config=peft_config ) trainer.train()