Skip to content

Instantly share code, notes, and snippets.

@wangii
Created September 27, 2018 09:16
Show Gist options
  • Save wangii/ea8c916863abce182dff0cf717a05853 to your computer and use it in GitHub Desktop.
Save wangii/ea8c916863abce182dff0cf717a05853 to your computer and use it in GitHub Desktop.

Revisions

  1. wangii created this gist Sep 27, 2018.
    1,756 changes: 1,756 additions & 0 deletions openpose hand
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,1756 @@
    input: "image"
    input_dim: 1 # Original: 2
    input_dim: 3 # It crashes if not left to 3
    input_dim: 1 # Original: 368
    input_dim: 1 # Original: 368
    layer {
    name: "conv1_1"
    type: "Convolution"
    bottom: "image"
    top: "conv1_1"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
    type: "xavier"
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "relu1_1"
    type: "ReLU"
    bottom: "conv1_1"
    top: "conv1_1"
    }
    layer {
    name: "conv1_2"
    type: "Convolution"
    bottom: "conv1_1"
    top: "conv1_2"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
    type: "xavier"
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "relu1_2"
    type: "ReLU"
    bottom: "conv1_2"
    top: "conv1_2"
    }
    layer {
    name: "pool1_stage1"
    type: "Pooling"
    bottom: "conv1_2"
    top: "pool1_stage1"
    pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
    }
    }
    layer {
    name: "conv2_1"
    type: "Convolution"
    bottom: "pool1_stage1"
    top: "conv2_1"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
    type: "xavier"
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "relu2_1"
    type: "ReLU"
    bottom: "conv2_1"
    top: "conv2_1"
    }
    layer {
    name: "conv2_2"
    type: "Convolution"
    bottom: "conv2_1"
    top: "conv2_2"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
    type: "xavier"
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "relu2_2"
    type: "ReLU"
    bottom: "conv2_2"
    top: "conv2_2"
    }
    layer {
    name: "pool2_stage1"
    type: "Pooling"
    bottom: "conv2_2"
    top: "pool2_stage1"
    pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
    }
    }
    layer {
    name: "conv3_1"
    type: "Convolution"
    bottom: "pool2_stage1"
    top: "conv3_1"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    weight_filler {
    type: "xavier"
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "relu3_1"
    type: "ReLU"
    bottom: "conv3_1"
    top: "conv3_1"
    }
    layer {
    name: "conv3_2"
    type: "Convolution"
    bottom: "conv3_1"
    top: "conv3_2"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    weight_filler {
    type: "xavier"
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "relu3_2"
    type: "ReLU"
    bottom: "conv3_2"
    top: "conv3_2"
    }
    layer {
    name: "conv3_3"
    type: "Convolution"
    bottom: "conv3_2"
    top: "conv3_3"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    weight_filler {
    type: "xavier"
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "relu3_3"
    type: "ReLU"
    bottom: "conv3_3"
    top: "conv3_3"
    }
    layer {
    name: "conv3_4"
    type: "Convolution"
    bottom: "conv3_3"
    top: "conv3_4"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    weight_filler {
    type: "xavier"
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "relu3_4"
    type: "ReLU"
    bottom: "conv3_4"
    top: "conv3_4"
    }
    layer {
    name: "pool3_stage1"
    type: "Pooling"
    bottom: "conv3_4"
    top: "pool3_stage1"
    pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
    }
    }
    layer {
    name: "conv4_1"
    type: "Convolution"
    bottom: "pool3_stage1"
    top: "conv4_1"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    weight_filler {
    type: "xavier"
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "relu4_1"
    type: "ReLU"
    bottom: "conv4_1"
    top: "conv4_1"
    }
    layer {
    name: "conv4_2"
    type: "Convolution"
    bottom: "conv4_1"
    top: "conv4_2"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    weight_filler {
    type: "xavier"
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "relu4_2"
    type: "ReLU"
    bottom: "conv4_2"
    top: "conv4_2"
    }
    layer {
    name: "conv4_3"
    type: "Convolution"
    bottom: "conv4_2"
    top: "conv4_3"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    weight_filler {
    type: "xavier"
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "relu4_3"
    type: "ReLU"
    bottom: "conv4_3"
    top: "conv4_3"
    }
    layer {
    name: "conv4_4"
    type: "Convolution"
    bottom: "conv4_3"
    top: "conv4_4"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    weight_filler {
    type: "xavier"
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "relu4_4"
    type: "ReLU"
    bottom: "conv4_4"
    top: "conv4_4"
    }
    layer {
    name: "conv5_1"
    type: "Convolution"
    bottom: "conv4_4"
    top: "conv5_1"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    weight_filler {
    type: "xavier"
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "relu5_1"
    type: "ReLU"
    bottom: "conv5_1"
    top: "conv5_1"
    }
    layer {
    name: "conv5_2"
    type: "Convolution"
    bottom: "conv5_1"
    top: "conv5_2"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    weight_filler {
    type: "xavier"
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "relu5_2"
    type: "ReLU"
    bottom: "conv5_2"
    top: "conv5_2"
    }
    layer {
    name: "conv5_3_CPM"
    type: "Convolution"
    bottom: "conv5_2"
    top: "conv5_3_CPM"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "relu5_4_stage1_3"
    type: "ReLU"
    bottom: "conv5_3_CPM"
    top: "conv5_3_CPM"
    }
    layer {
    name: "conv6_1_CPM"
    type: "Convolution"
    bottom: "conv5_3_CPM"
    top: "conv6_1_CPM"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 512
    pad: 0
    kernel_size: 1
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "relu6_4_stage1_1"
    type: "ReLU"
    bottom: "conv6_1_CPM"
    top: "conv6_1_CPM"
    }
    layer {
    name: "conv6_2_CPM"
    type: "Convolution"
    bottom: "conv6_1_CPM"
    top: "conv6_2_CPM"
    param {
    lr_mult: 1.0
    decay_mult: 1
    }
    param {
    lr_mult: 2.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 22
    pad: 0
    kernel_size: 1
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "concat_stage2"
    type: "Concat"
    bottom: "conv6_2_CPM"
    bottom: "conv5_3_CPM"
    top: "concat_stage2"
    concat_param {
    axis: 1
    }
    }
    layer {
    name: "Mconv1_stage2"
    type: "Convolution"
    bottom: "concat_stage2"
    top: "Mconv1_stage2"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_2_stage2_1"
    type: "ReLU"
    bottom: "Mconv1_stage2"
    top: "Mconv1_stage2"
    }
    layer {
    name: "Mconv2_stage2"
    type: "Convolution"
    bottom: "Mconv1_stage2"
    top: "Mconv2_stage2"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_3_stage2_2"
    type: "ReLU"
    bottom: "Mconv2_stage2"
    top: "Mconv2_stage2"
    }
    layer {
    name: "Mconv3_stage2"
    type: "Convolution"
    bottom: "Mconv2_stage2"
    top: "Mconv3_stage2"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_4_stage2_3"
    type: "ReLU"
    bottom: "Mconv3_stage2"
    top: "Mconv3_stage2"
    }
    layer {
    name: "Mconv4_stage2"
    type: "Convolution"
    bottom: "Mconv3_stage2"
    top: "Mconv4_stage2"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_5_stage2_4"
    type: "ReLU"
    bottom: "Mconv4_stage2"
    top: "Mconv4_stage2"
    }
    layer {
    name: "Mconv5_stage2"
    type: "Convolution"
    bottom: "Mconv4_stage2"
    top: "Mconv5_stage2"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_6_stage2_5"
    type: "ReLU"
    bottom: "Mconv5_stage2"
    top: "Mconv5_stage2"
    }
    layer {
    name: "Mconv6_stage2"
    type: "Convolution"
    bottom: "Mconv5_stage2"
    top: "Mconv6_stage2"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 0
    kernel_size: 1
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_7_stage2_6"
    type: "ReLU"
    bottom: "Mconv6_stage2"
    top: "Mconv6_stage2"
    }
    layer {
    name: "Mconv7_stage2"
    type: "Convolution"
    bottom: "Mconv6_stage2"
    top: "Mconv7_stage2"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 22
    pad: 0
    kernel_size: 1
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "concat_stage3"
    type: "Concat"
    bottom: "Mconv7_stage2"
    bottom: "conv5_3_CPM"
    top: "concat_stage3"
    concat_param {
    axis: 1
    }
    }
    layer {
    name: "Mconv1_stage3"
    type: "Convolution"
    bottom: "concat_stage3"
    top: "Mconv1_stage3"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_2_stage3_1"
    type: "ReLU"
    bottom: "Mconv1_stage3"
    top: "Mconv1_stage3"
    }
    layer {
    name: "Mconv2_stage3"
    type: "Convolution"
    bottom: "Mconv1_stage3"
    top: "Mconv2_stage3"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_3_stage3_2"
    type: "ReLU"
    bottom: "Mconv2_stage3"
    top: "Mconv2_stage3"
    }
    layer {
    name: "Mconv3_stage3"
    type: "Convolution"
    bottom: "Mconv2_stage3"
    top: "Mconv3_stage3"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_4_stage3_3"
    type: "ReLU"
    bottom: "Mconv3_stage3"
    top: "Mconv3_stage3"
    }
    layer {
    name: "Mconv4_stage3"
    type: "Convolution"
    bottom: "Mconv3_stage3"
    top: "Mconv4_stage3"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_5_stage3_4"
    type: "ReLU"
    bottom: "Mconv4_stage3"
    top: "Mconv4_stage3"
    }
    layer {
    name: "Mconv5_stage3"
    type: "Convolution"
    bottom: "Mconv4_stage3"
    top: "Mconv5_stage3"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_6_stage3_5"
    type: "ReLU"
    bottom: "Mconv5_stage3"
    top: "Mconv5_stage3"
    }
    layer {
    name: "Mconv6_stage3"
    type: "Convolution"
    bottom: "Mconv5_stage3"
    top: "Mconv6_stage3"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 0
    kernel_size: 1
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_7_stage3_6"
    type: "ReLU"
    bottom: "Mconv6_stage3"
    top: "Mconv6_stage3"
    }
    layer {
    name: "Mconv7_stage3"
    type: "Convolution"
    bottom: "Mconv6_stage3"
    top: "Mconv7_stage3"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 22
    pad: 0
    kernel_size: 1
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "concat_stage4"
    type: "Concat"
    bottom: "Mconv7_stage3"
    bottom: "conv5_3_CPM"
    top: "concat_stage4"
    concat_param {
    axis: 1
    }
    }
    layer {
    name: "Mconv1_stage4"
    type: "Convolution"
    bottom: "concat_stage4"
    top: "Mconv1_stage4"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_2_stage4_1"
    type: "ReLU"
    bottom: "Mconv1_stage4"
    top: "Mconv1_stage4"
    }
    layer {
    name: "Mconv2_stage4"
    type: "Convolution"
    bottom: "Mconv1_stage4"
    top: "Mconv2_stage4"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_3_stage4_2"
    type: "ReLU"
    bottom: "Mconv2_stage4"
    top: "Mconv2_stage4"
    }
    layer {
    name: "Mconv3_stage4"
    type: "Convolution"
    bottom: "Mconv2_stage4"
    top: "Mconv3_stage4"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_4_stage4_3"
    type: "ReLU"
    bottom: "Mconv3_stage4"
    top: "Mconv3_stage4"
    }
    layer {
    name: "Mconv4_stage4"
    type: "Convolution"
    bottom: "Mconv3_stage4"
    top: "Mconv4_stage4"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_5_stage4_4"
    type: "ReLU"
    bottom: "Mconv4_stage4"
    top: "Mconv4_stage4"
    }
    layer {
    name: "Mconv5_stage4"
    type: "Convolution"
    bottom: "Mconv4_stage4"
    top: "Mconv5_stage4"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_6_stage4_5"
    type: "ReLU"
    bottom: "Mconv5_stage4"
    top: "Mconv5_stage4"
    }
    layer {
    name: "Mconv6_stage4"
    type: "Convolution"
    bottom: "Mconv5_stage4"
    top: "Mconv6_stage4"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 0
    kernel_size: 1
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_7_stage4_6"
    type: "ReLU"
    bottom: "Mconv6_stage4"
    top: "Mconv6_stage4"
    }
    layer {
    name: "Mconv7_stage4"
    type: "Convolution"
    bottom: "Mconv6_stage4"
    top: "Mconv7_stage4"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 22
    pad: 0
    kernel_size: 1
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "concat_stage5"
    type: "Concat"
    bottom: "Mconv7_stage4"
    bottom: "conv5_3_CPM"
    top: "concat_stage5"
    concat_param {
    axis: 1
    }
    }
    layer {
    name: "Mconv1_stage5"
    type: "Convolution"
    bottom: "concat_stage5"
    top: "Mconv1_stage5"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_2_stage5_1"
    type: "ReLU"
    bottom: "Mconv1_stage5"
    top: "Mconv1_stage5"
    }
    layer {
    name: "Mconv2_stage5"
    type: "Convolution"
    bottom: "Mconv1_stage5"
    top: "Mconv2_stage5"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_3_stage5_2"
    type: "ReLU"
    bottom: "Mconv2_stage5"
    top: "Mconv2_stage5"
    }
    layer {
    name: "Mconv3_stage5"
    type: "Convolution"
    bottom: "Mconv2_stage5"
    top: "Mconv3_stage5"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_4_stage5_3"
    type: "ReLU"
    bottom: "Mconv3_stage5"
    top: "Mconv3_stage5"
    }
    layer {
    name: "Mconv4_stage5"
    type: "Convolution"
    bottom: "Mconv3_stage5"
    top: "Mconv4_stage5"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_5_stage5_4"
    type: "ReLU"
    bottom: "Mconv4_stage5"
    top: "Mconv4_stage5"
    }
    layer {
    name: "Mconv5_stage5"
    type: "Convolution"
    bottom: "Mconv4_stage5"
    top: "Mconv5_stage5"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_6_stage5_5"
    type: "ReLU"
    bottom: "Mconv5_stage5"
    top: "Mconv5_stage5"
    }
    layer {
    name: "Mconv6_stage5"
    type: "Convolution"
    bottom: "Mconv5_stage5"
    top: "Mconv6_stage5"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 0
    kernel_size: 1
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_7_stage5_6"
    type: "ReLU"
    bottom: "Mconv6_stage5"
    top: "Mconv6_stage5"
    }
    layer {
    name: "Mconv7_stage5"
    type: "Convolution"
    bottom: "Mconv6_stage5"
    top: "Mconv7_stage5"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 22
    pad: 0
    kernel_size: 1
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "concat_stage6"
    type: "Concat"
    bottom: "Mconv7_stage5"
    bottom: "conv5_3_CPM"
    top: "concat_stage6"
    concat_param {
    axis: 1
    }
    }
    layer {
    name: "Mconv1_stage6"
    type: "Convolution"
    bottom: "concat_stage6"
    top: "Mconv1_stage6"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_2_stage6_1"
    type: "ReLU"
    bottom: "Mconv1_stage6"
    top: "Mconv1_stage6"
    }
    layer {
    name: "Mconv2_stage6"
    type: "Convolution"
    bottom: "Mconv1_stage6"
    top: "Mconv2_stage6"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_3_stage6_2"
    type: "ReLU"
    bottom: "Mconv2_stage6"
    top: "Mconv2_stage6"
    }
    layer {
    name: "Mconv3_stage6"
    type: "Convolution"
    bottom: "Mconv2_stage6"
    top: "Mconv3_stage6"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_4_stage6_3"
    type: "ReLU"
    bottom: "Mconv3_stage6"
    top: "Mconv3_stage6"
    }
    layer {
    name: "Mconv4_stage6"
    type: "Convolution"
    bottom: "Mconv3_stage6"
    top: "Mconv4_stage6"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_5_stage6_4"
    type: "ReLU"
    bottom: "Mconv4_stage6"
    top: "Mconv4_stage6"
    }
    layer {
    name: "Mconv5_stage6"
    type: "Convolution"
    bottom: "Mconv4_stage6"
    top: "Mconv5_stage6"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 3
    kernel_size: 7
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_6_stage6_5"
    type: "ReLU"
    bottom: "Mconv5_stage6"
    top: "Mconv5_stage6"
    }
    layer {
    name: "Mconv6_stage6"
    type: "Convolution"
    bottom: "Mconv5_stage6"
    top: "Mconv6_stage6"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 128
    pad: 0
    kernel_size: 1
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }
    layer {
    name: "Mrelu1_7_stage6_6"
    type: "ReLU"
    bottom: "Mconv6_stage6"
    top: "Mconv6_stage6"
    }
    layer {
    name: "Mconv7_stage6"
    type: "Convolution"
    bottom: "Mconv6_stage6"
    # top: "Mconv7_stage6"
    top: "net_output"
    param {
    lr_mult: 4.0
    decay_mult: 1
    }
    param {
    lr_mult: 8.0
    decay_mult: 0
    }
    convolution_param {
    num_output: 22
    pad: 0
    kernel_size: 1
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    }
    dilation: 1
    }
    }