Forked from masroorhasan/optimized_tf_serving_client.py
Created
July 7, 2019 03:29
-
-
Save wengbenjue/64d420a96b7135ea12d377218fb2e5f2 to your computer and use it in GitHub Desktop.
Revisions
-
masroorhasan renamed this gist
Feb 24, 2019 . 1 changed file with 0 additions and 0 deletions.There are no files selected for viewing
File renamed without changes. -
masroorhasan created this gist
Feb 24, 2019 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,48 @@ #!/usr/bin/env python from __future__ import print_function import argparse import numpy as np import time tt = time.time() import cv2 from grpc.beta import implementations from protos.tensorflow.core.framework import tensor_pb2 from protos.tensorflow.core.framework import tensor_shape_pb2 from protos.tensorflow.core.framework import types_pb2 from protos.tensorflow_serving.apis import predict_pb2 from protos.tensorflow_serving.apis import prediction_service_pb2 parser = argparse.ArgumentParser(description='incetion grpc client flags.') parser.add_argument('--host', default='0.0.0.0', help='inception serving host') parser.add_argument('--port', default='9000', help='inception serving port') parser.add_argument('--image', default='', help='path to JPEG image file') FLAGS = parser.parse_args() def main(): # create prediction service client stub channel = implementations.insecure_channel(FLAGS.host, int(FLAGS.port)) stub = prediction_service_pb2.beta_create_PredictionService_stub(channel) # create request request = predict_pb2.PredictRequest() request.model_spec.name = 'resnet' request.model_spec.signature_name = 'serving_default' # read image into numpy array img = cv2.imread(FLAGS.image).astype(np.float32) # convert to tensor proto and make request # shape is in NHWC (num_samples x height x width x channels) format dims = [tensor_shape_pb2.TensorShapeProto.Dim(size=dim) for dim in [1]+list(img.shape)] tensor = tensor_pb2.TensorProto( dtype=types_pb2.DT_FLOAT, tensor_shape=tensor_shape_pb2.TensorShapeProto(dim=dims), float_val=list(img.reshape(-1))) request.inputs['input'].CopyFrom(tensor) resp = stub.Predict(request, 30.0) print('total time: {}s'.format(time.time() - tt)) if __name__ == '__main__': main()