Bootstrap knowledge of LLMs ASAP. With a bias/focus to GPT.
Avoid being a link dump. Try to provide only valuable well tuned information.
Neural network links before starting with transformers.
| import fs from 'node:fs'; | |
| const conversations = JSON.parse(fs.readFileSync('conversations.json', 'utf8')); | |
| function unpackMapping(currentNode, mapping) { | |
| const conversation = []; | |
| let node = mapping[currentNode]; | |
| while (node) { | |
| const message = node.message; |
| [ | |
| { | |
| "action": { | |
| "type": "block" | |
| }, | |
| "trigger": { | |
| "url-filter": "https://www.youtube.com/api/stats/ads.*" | |
| } | |
| }, | |
| { |
| echo '' > input.xcfilelist | |
| find Carthage/Build/iOS -name *.framework -exec echo '$(SRCROOT}'/{} \; >> input.xcfilelist | |
| echo '' > output.xcfilelist | |
| find Carthage/Build/iOS -name *.framework -exec basename {} \; | xargs -I {} -n1 echo '$(BUILT_PRODUCTS_DIR)/$(FRAMEWORKS_FOLDER_PATH)/'{} >> output.xcfilelist |
| #!/bin/bash | |
| convert -density 300 $1 -depth 8 -fill white -background white -alpha Off out.tiff && tesseract out.tiff $1 pdf && rm -f out.tiff |