Created
September 5, 2019 16:15
-
-
Save wmayner/272a1a340403fead4703e4c78b5ec7f9 to your computer and use it in GitHub Desktop.
Revisions
-
wmayner created this gist
Sep 5, 2019 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,50 @@ # from # https://gist.github.com/nils-werner/9d321441006b112a4b116a8387c2280c/raw/489137f314c022ca08f0c5089319ded2eb8c5ae1/sliding_window.py def sliding_window(size, data, step=1, padded=False, axis=-1, copy=True): """Calculate a sliding window over an array. Note: If the array cannot be windowed evenly, it is truncated at the end. Args: data (np.ndarray): The array to be windowed. size (int): The window size. step (int): The number of elements between windows. Defaults to 1. axis (int): The axis to slide over. Defaults to the last axis. copy (bool): Return a copy instead of a view. Returns: np.ndarray: A matrix where the last dimension corresponds to the window. Examples: >>> a = np.array([1, 2, 3, 4, 5]) >>> sliding_window(3, a) array([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) >>> sliding_window(3, a, step=2) array([[1, 2, 3], [3, 4, 5]]) """ if axis >= data.ndim: raise ValueError("axis value out of range") if step < 1: raise ValueError("step size must be positive") if size > data.shape[axis]: raise ValueError("window size may not exceed size of selected axis") shape = list(data.shape) shape[axis] = np.floor(data.shape[axis] / step - size / step + 1).astype(int) shape.append(size) strides = list(data.strides) strides[axis] *= step strides.append(data.strides[axis]) strided = np.lib.stride_tricks.as_strided(data, shape=shape, strides=strides) if copy: return strided.copy() else: return strided