Created
          April 20, 2017 07:20 
        
      - 
      
 - 
        
Save ximeg/587011a65d05f067a29ce9c22894d1d2 to your computer and use it in GitHub Desktop.  
    Python implementation of smoothed z-score algorithm from http://stackoverflow.com/a/22640362/6029703
  
        
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | #!/usr/bin/env python | |
| # Implementation of algorithm from http://stackoverflow.com/a/22640362/6029703 | |
| import numpy as np | |
| import pylab | |
| def thresholding_algo(y, lag, threshold, influence): | |
| signals = np.zeros(len(y)) | |
| filteredY = np.array(y) | |
| avgFilter = [0]*len(y) | |
| stdFilter = [0]*len(y) | |
| avgFilter[lag - 1] = np.mean(y[0:lag]) | |
| stdFilter[lag - 1] = np.std(y[0:lag]) | |
| for i in range(lag, len(y) - 1): | |
| if abs(y[i] - avgFilter[i-1]) > threshold * stdFilter [i-1]: | |
| if y[i] > avgFilter[i-1]: | |
| signals[i] = 1 | |
| else: | |
| signals[i] = -1 | |
| filteredY[i] = influence * y[i] + (1 - influence) * filteredY[i-1] | |
| avgFilter[i] = np.mean(filteredY[(i-lag):i]) | |
| stdFilter[i] = np.std(filteredY[(i-lag):i]) | |
| else: | |
| signals[i] = 0 | |
| filteredY[i] = y[i] | |
| avgFilter[i] = np.mean(filteredY[(i-lag):i]) | |
| stdFilter[i] = np.std(filteredY[(i-lag):i]) | |
| return dict(signals = np.asarray(signals), | |
| avgFilter = np.asarray(avgFilter), | |
| stdFilter = np.asarray(stdFilter)) | |
| # Data | |
| y = np.array([1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9, | |
| 1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3, | |
| 2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1]) | |
| # Settings: lag = 30, threshold = 5, influence = 0 | |
| lag = 30 | |
| threshold = 5 | |
| influence = 0 | |
| # Run algo with settings from above | |
| result = thresholding_algo(y, lag=lag, threshold=threshold, influence=influence) | |
| # Plot result | |
| pylab.subplot(211) | |
| pylab.plot(np.arange(1, len(y)+1), y) | |
| pylab.plot(np.arange(1, len(y)+1), | |
| result["avgFilter"], color="cyan", lw=2) | |
| pylab.plot(np.arange(1, len(y)+1), | |
| result["avgFilter"] + threshold * result["stdFilter"], color="green", lw=2) | |
| pylab.plot(np.arange(1, len(y)+1), | |
| result["avgFilter"] - threshold * result["stdFilter"], color="green", lw=2) | |
| pylab.subplot(212) | |
| pylab.step(np.arange(1, len(y)+1), result["signals"], color="red", lw=2) | |
| pylab.ylim(-1.5, 1.5) | |
Thank you for this code,
I did some modifications for the estimation of avg and std.
https://gist.github.com/PeiLi-Sandman/d67baad835a516481e6ca124a08840f2
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment
  
            
Thank you so much for your code!
With small changes, your code could be faster. I changed the list to arrays and used numba for optimization.
With large time series, your code takes approximately 35 s, with changes the code takes 1.5 s.
Check here:
https://gist.github.com/dlegor/286dd5cd5ecc317c34ed81aaed4a2b37