- skip sdpa
{
"mode": "QUANTIZE",
"observer": "maxabs",
"scale_method": "ACT_MAXABS_HW_WEIGHTS_PCS_MAXABS_POW2",
"scale_format": "const",
"allowlist": {
"types": [],
"names": []| import ctypes | |
| import torch | |
| import time | |
| def nvrtc_compile(source: str) -> str: | |
| from ctypes import CDLL, c_void_p, c_char_p, c_size_t, byref, create_string_buffer | |
| libnvrtc = CDLL('libnvrtc.so') | |
| def get_error_string() -> str: | |
| err_p = c_char_p() | |
| libnvrtc.nvrtcGetErrorString(result, byref(err_str)) |
| Run 1: | |
| Auto-configed device: cuda | |
| WARNING:sglang.srt.server_args:Detected SM100 and MXFP4 quantization format for GPT-OSS model, enabling FlashInfer MXFP4 MOE kernel. | |
| WARNING:sglang.srt.server_args:TensorRT-LLM MHA only supports page_size of 16, 32 or 64, changing page_size from None to 64. | |
| [2025-09-06 08:26:09] server_args=ServerArgs(model_path='/home/yiliu7/models/openai/gpt-oss-120b', tokenizer_path='/home/yiliu7/models/openai/gpt-oss-120b', tokenizer_mode='auto', tokenizer_worker_num=1, skip_tokenizer_init=False, load_format='auto', model_loader_extra_config='{}', trust_remote_code=False, context_length=None, is_embedding=False, enable_multimodal=None, revision=None, model_impl='auto', host='127.0.0.1', port=8400, skip_server_warmup=False, warmups=None, nccl_port=None, dtype='bfloat16', quantization=None, quantization_param_path=None, kv_cache_dtype='auto', mem_fraction_static=0.93, max_running_requests=None, max_queued_requests=9223372036854775807, max_total_tokens=None, chunked_prefill_size=16384, max_p |
{
"mode": "QUANTIZE",
"observer": "maxabs",
"scale_method": "ACT_MAXABS_HW_WEIGHTS_PCS_MAXABS_POW2",
"scale_format": "const",
"allowlist": {
"types": [],
"names": []| from triton.testing import do_bench | |
| import torch | |
| from test_packing import _create_random_e2m1_tensor, pack_fp4_to_uint8_old | |
| from auto_round.export.export_to_autoround.qlinear_fp import FLOAT_TO_E2M1, pack_fp4_to_uint8 | |
| from dataclasses import dataclass | |
| from typing import List, Dict | |
| import json | |
| @dataclass | |
| class MoeOpInfo: | |
| num_inputs: int = 0 | |
| num_outputs: int = 0 |
| // INC | |
| [ | |
| { | |
| "0": { | |
| "logprob": 0.0, | |
| "rank": 1, | |
| "decoded_token": "" | |
| }, | |
| "113689": { | |
| "logprob": -18.8125, |
| ############################################################################### | |
| # Copyright (C) 2024 Habana Labs, Ltd. an Intel Company | |
| ############################################################################### | |
| import argparse | |
| import json | |
| import os | |
| import sys | |
| import numpy as np |
| Question: Jen and Tyler are gymnasts practicing flips. Jen is practicing the triple-flip while Tyler is practicing the double-flip. Jen did sixteen triple-flips during practice. Tyler flipped in the air half the number of times Jen did. How many double-flips did Tyler do?\nAnswer: Jen did 16 triple-flips, so she did 16 * 3 = <<16*3=48>>48 flips.\nTyler did half the number of flips, so he did 48 / 2 = <<48/2=24>>24 flips.\nA double flip has two flips, so Tyler did 24 / 2 = <<24/2=12>>12 double-flips.\n#### 12\n\nQuestion: Four people in a law firm are planning a party. Mary will buy a platter of pasta for $20 and a loaf of bread for $2. Elle and Andrea will split the cost for buying 4 cans of soda which cost $1.50 each, and chicken wings for $10. Joe will buy a cake that costs $5. How much more will Mary spend than the rest of the firm put together?\nAnswer: Mary will spend $20 + $2 = $<<20+2=22>>22.\nElle and Andrea will spend $1.5 x 4 = $<<1.5*4=6>>6 for the soda.\nElle and Andrea will spend $6 + $10 = $<<6+ |
| Warning, examples/language-modeling/main.py is deprecated, please use auto-round cmd line instead. The file will be deleted in the V0.4.1 release | |
| /models/Llama-2-7b-chat-hf | |
| 2024-11-13 00:49:05 INFO utils.py L494: Using GPU device | |
| Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s] | |
| Loading checkpoint shards: 50%|βββββ | 1/2 [00:01<00:01, 1.61s/it] | |
| Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:02<00:00, 1.04s/it] | |
| Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:02<00:00, 1.12s/it] | |
| 2024-11-13 00:49:10 INFO autoround.py L218: using torch.float16 for quantization tuning | |
| 2024-11-13 00:49:10 INFO autoround.py L286: start calibration |