Created
July 1, 2017 03:20
-
-
Save zh4ngx/8fd7892f79a2b9a090bfecb645b1e3d9 to your computer and use it in GitHub Desktop.
Revisions
-
Andy Zhang created this gist
Jul 1, 2017 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,93 @@ import gym import numpy as np from gym.wrappers.monitoring import Monitor MC_POLICY_EVAL_EP = 10 BASE_NOISE_FACTOR = 0.5 NUM_POLICY_EVAL = 500 env = gym.make('CartPole-v0') env = Monitor(env, 'tmp/cart-pole-hill-climb-3', force=True) print("Action space: {0}".format(env.action_space)) print("Observation space: {0}\n\tLow: {1}\n\tHigh: {2}".format( env.observation_space, env.observation_space.low, env.observation_space.high, )) def action_selection(weights, observation): if np.matmul(weights, observation) < 0: return 0 else: return 1 def run_episode(weights): observation = env.reset() total_reward = 0 for t in range(200): env.render() action = action_selection(weights, observation) observation, reward, done, info = env.step(action) total_reward += reward if done: print("Episode finished after {0} timesteps with reward {1}".format( t + 1, total_reward, )) break return total_reward def evaluate_policy(num_episodes, weights): mean_reward = 0 for k in range(1, num_episodes + 1): reward = run_episode(weights) error = reward - mean_reward mean_reward += error / k print("Mean reward estimated as {0} for past {1} episodes".format( mean_reward, num_episodes )) return mean_reward best_reward = -np.inf best_params = np.random.rand(4) * 2 - 1 print("Running Hill Climb on Cart Pole") print("Params:\n\tMC Eval Count: {0} trajectories\n\tBase Noise Factor: {1}".format( MC_POLICY_EVAL_EP, BASE_NOISE_FACTOR, )) for i_episode in range(NUM_POLICY_EVAL): # Weights are 1x4 matrix # µ = 0 , sigma 1 annealing_term = 1 - (i_episode / NUM_POLICY_EVAL) noise_scaling = BASE_NOISE_FACTOR * annealing_term print("Applying jitter with factor {0} to parameters {1}".format( noise_scaling, best_params, )) # Add gaussian noise # µ = 0 , sigma = noise_scaling noise_term = np.random.randn(4) * noise_scaling parameters = best_params + noise_term episodic_reward = evaluate_policy(MC_POLICY_EVAL_EP, parameters) if episodic_reward > best_reward: print("Episode {2}: Got new best reward of {0}, better than previous of {1}".format( episodic_reward, best_reward, i_episode, )) best_reward = episodic_reward best_params = parameters env.close()