Created
November 20, 2016 11:50
-
-
Save zhengyangchoong/dce8cfd2527d4efbee371c93522f929f to your computer and use it in GitHub Desktop.
Revisions
-
Choong Zheng Yang created this gist
Nov 20, 2016 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,79 @@ """ categories: pro, premier, open. cly --> strong men ath --> strong women swim, t1, bike, t2, run, total where t1 and t2 refer to the times needed for the transition between the modes of exercise. """ import matplotlib.pyplot as plt import numpy as np import datetime f = open('HiMCM_TriDataSet.csv', 'r') people = [] class person(): def __init__(self): self.id = 0 self.age = 0 self.gender = "" self.cat = "" self.timings = [] self.speeds = [] def processTimings(self): newtimings = [] speeds = [] for i in self.timings: #print int(i.split(':')[1]) * 60 t = int(i.split(':')[0]) * 3600 + int(i.split(':')[1]) * 60 + int(i.split(':')[2].strip()) newtimings.append(t) self.speeds.append(1.0/t) self.timings = newtimings for line in f: if line[:1] == "#": continue if len(line) == 0: continue a = person() data = line.strip().split(",") a.id = int(data[0]) a.age = int(data[1]) a.gender = data[2] a.cat = data[3] a.timings = data[4:] a.processTimings() people.append(a) male_open_totaltiming = [] female_open_totaltiming = [] def genHistPlot(cats, timingindex, filename, fn = None): # category, timings index _data = [] if fn == None: for i in cats: _data.append([person.timings[timingindex] for person in people if person.cat == i]) else: for i in cats: _data.append([fn(person.timings[timingindex]) for person in people if person.cat == i]) with plt.style.context('fivethirtyeight'): plt.gcf().subplots_adjust(bottom=0.15) plt.gcf().subplots_adjust(left=0.17) plt.grid('off') for i in _data: plt.hist(i, normed=1,alpha = 0.5) plt.xlabel("Total time [s]", fontsize=16) plt.ylabel("Normalised frequency [#]", fontsize=16) plt.savefig(filename+'.pdf') plt.clf() plt.cla() plt.close() genHistPlot(["M OPEN", "F OPEN"], 5, "open_gender_timing_distribution") genHistPlot(["M OPEN", "F OPEN"], 5, "open_gender_speed_distribution", fn = lambda x: 1.0/x) genHistPlot(["M PREMIER", "M PRO", "CLY"], 1, "male_non-open_swimtime_distribution")