Skip to content

Instantly share code, notes, and snippets.

@zhengyangchoong
Created November 20, 2016 11:50
Show Gist options
  • Select an option

  • Save zhengyangchoong/dce8cfd2527d4efbee371c93522f929f to your computer and use it in GitHub Desktop.

Select an option

Save zhengyangchoong/dce8cfd2527d4efbee371c93522f929f to your computer and use it in GitHub Desktop.

Revisions

  1. Choong Zheng Yang created this gist Nov 20, 2016.
    79 changes: 79 additions & 0 deletions runjumpfly.py
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,79 @@
    """
    categories: pro, premier, open.
    cly --> strong men
    ath --> strong women
    swim, t1, bike, t2, run, total
    where t1 and t2 refer to the times needed for the transition between the modes of exercise.
    """

    import matplotlib.pyplot as plt
    import numpy as np
    import datetime

    f = open('HiMCM_TriDataSet.csv', 'r')

    people = []

    class person():
    def __init__(self):
    self.id = 0
    self.age = 0
    self.gender = ""
    self.cat = ""
    self.timings = []
    self.speeds = []
    def processTimings(self):
    newtimings = []
    speeds = []
    for i in self.timings:
    #print int(i.split(':')[1]) * 60
    t = int(i.split(':')[0]) * 3600 + int(i.split(':')[1]) * 60 + int(i.split(':')[2].strip())
    newtimings.append(t)
    self.speeds.append(1.0/t)
    self.timings = newtimings

    for line in f:
    if line[:1] == "#":
    continue
    if len(line) == 0:
    continue
    a = person()
    data = line.strip().split(",")
    a.id = int(data[0])
    a.age = int(data[1])
    a.gender = data[2]
    a.cat = data[3]
    a.timings = data[4:]
    a.processTimings()
    people.append(a)

    male_open_totaltiming = []
    female_open_totaltiming = []

    def genHistPlot(cats, timingindex, filename, fn = None): # category, timings index
    _data = []
    if fn == None:
    for i in cats:
    _data.append([person.timings[timingindex] for person in people if person.cat == i])
    else:
    for i in cats:
    _data.append([fn(person.timings[timingindex]) for person in people if person.cat == i])

    with plt.style.context('fivethirtyeight'):

    plt.gcf().subplots_adjust(bottom=0.15)
    plt.gcf().subplots_adjust(left=0.17)
    plt.grid('off')
    for i in _data:
    plt.hist(i, normed=1,alpha = 0.5)
    plt.xlabel("Total time [s]", fontsize=16)
    plt.ylabel("Normalised frequency [#]", fontsize=16)
    plt.savefig(filename+'.pdf')
    plt.clf()
    plt.cla()
    plt.close()

    genHistPlot(["M OPEN", "F OPEN"], 5, "open_gender_timing_distribution")
    genHistPlot(["M OPEN", "F OPEN"], 5, "open_gender_speed_distribution", fn = lambda x: 1.0/x)
    genHistPlot(["M PREMIER", "M PRO", "CLY"], 1, "male_non-open_swimtime_distribution")