Skip to content

Instantly share code, notes, and snippets.

@chamrc
Created March 30, 2018 16:20
Show Gist options
  • Save chamrc/1acb81d174a9b4a2b40abaa71a35cd1d to your computer and use it in GitHub Desktop.
Save chamrc/1acb81d174a9b4a2b40abaa71a35cd1d to your computer and use it in GitHub Desktop.
MNIST CNN
name: "Convolutional Neural Network"
input: "Images (1000x1x28x28)"
input_dim: 1000
input_dim: 3
input_dim: 28
input_dim: 28
layer {
bottom: "Images (1000x1x28x28)"
top: "Conv2d (1000x64x28x28)"
name: "Conv2d (1000x64x28x28)"
type: "Convolution"
convolution_param {
num_output: 64
kernel_size: 5
stride: 1
pad: 2
}
}
layer {
bottom: "Conv2d (1000x64x28x28)"
top: "Conv2d (1000x64x28x28)"
name: "BatchNorm 1"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "Conv2d (1000x64x28x28)"
top: "Conv2d (1000x64x28x28)"
name: "ReLU 1"
type: "ReLU"
}
layer {
bottom: "Conv2d (1000x64x28x28)"
top: "Conv2d (1000x64x28x28)"
name: "MaxPool 1 (1000x64x14x14)"
type: "Pooling"
pooling_param {
kernel_size: 3
stride: 2
pool: MAX
}
}
layer {
bottom: "Conv2d (1000x64x28x28)"
top: "Conv2d (1000x128x14x14)"
name: "Conv2d (1000x128x14x14)"
type: "Convolution"
convolution_param {
num_output: 128
kernel_size: 1
pad: 0
stride: 1
bias_term: false
}
}
layer {
bottom: "Conv2d (1000x128x14x14)"
top: "Conv2d (1000x128x14x14)"
name: "BatchNorm 2"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "Conv2d (1000x128x14x14)"
top: "Conv2d (1000x128x14x14)"
name: "ReLU 2"
type: "ReLU"
}
layer {
bottom: "Conv2d (1000x128x14x14)"
top: "Conv2d (1000x128x14x14)"
name: "MaxPool 2 (1000x128x7x7)"
type: "Pooling"
pooling_param {
kernel_size: 3
stride: 2
pool: MAX
}
}
layer {
bottom: "Conv2d (1000x128x14x14)"
top: "Flatten (1000x6272)"
name: "Flatten (1000x6272)"
type: "InnerProduct"
inner_product_param {
num_output: 6272
}
}
layer {
bottom: "Flatten (1000x6272)"
top: "Linear (1000x10)"
name: "Linear (1000x10)"
type: "InnerProduct"
inner_product_param {
num_output: 10
}
}
layer {
bottom: "Linear (1000x10)"
top: "Softmax"
name: "Softmax"
type: "Softmax"
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment