Skip to content

Instantly share code, notes, and snippets.

View classicvalues's full-sized avatar
🥇
Automating Python! Working Chatbot @ gemini-chatbot-mocha-three.vercel.app

Classic Values classicvalues

🥇
Automating Python! Working Chatbot @ gemini-chatbot-mocha-three.vercel.app
View GitHub Profile
@classicvalues
classicvalues / primary_accent_colors.py
Last active November 2, 2024 05:53
Color Query via Colorsys and Random on Python
import colorsys
import random
import os
# Define output directory
output_dir = "School/Stanford_University/Programs/Leadership_Education_for_Aspiring_Physicians/Research/Color/Query"
os.makedirs(output_dir, exist_ok=True)
# Function to convert RGB values to hex
def rgb_to_hex(rgb):
@classicvalues
classicvalues / scholarly_query.py
Created November 2, 2024 02:00
Top Cited Research Fetcher by CrossRef API Query
import requests
import os
import csv
# Define input and output paths
query_file_path = "/School/Stanford_University/Programs/Leadership_Education_for_Aspiring_Physicians/Research/Literature/Scholarly/Query/scholar_queries.csv"
output_dir = "/School/Stanford_University/Programs/Leadership_Education_for_Aspiring_Physicians/Research/Literature/Scholarly/Results"
os.makedirs(output_dir, exist_ok=True)
# Fetch results using CrossRef API
@classicvalues
classicvalues / gist:56821d6a25b74755d9f09980e5b97d53
Created November 1, 2024 19:24
Source List .d for Stanford University
Types: deb
URIs: https://debian.stanford.edu/ubuntu
Suites: noble noble-proposed noble-updates noble-security noble-backports
Components: main universe restricted multiverse
Signed-By: /usr/share/keyrings/ubuntu-archive-keyring.gpg
@classicvalues
classicvalues / binance_all.py
Created September 2, 2024 22:40
Binance Trading -ALL ASSETS- API Code
from binance.client import Client
from datetime import datetime, timedelta
import time
# Set up Binance API credentials
api_key = 'YOUR_BINANCE_API_KEY'
api_secret = 'YOUR_BINANCE_API_SECRET'
# Login to Binance
client = Client(api_key, api_secret)
@classicvalues
classicvalues / td_ameritrade_all.py
Created September 2, 2024 22:38
TD Ameritrade Trade -ALL ASSETS- API Code
from td.client import TDClient
from datetime import datetime, timedelta
import time
# Set up TD Ameritrade API credentials
consumer_key = 'YOUR_TD_AMERITRADE_CONSUMER_KEY'
redirect_uri = 'YOUR_REDIRECT_URI'
credentials_path = 'path_to_credentials.json' # Path where credentials will be stored
# Login to TD Ameritrade
@classicvalues
classicvalues / robinhood_all.py
Created September 2, 2024 22:34
Robinhood Trading -ALL ASSETS- API Code
import robin_stocks.robinhood as r
import time
from datetime import datetime, timedelta
# Set up Robinhood API credentials
username = 'your_robinhood_username'
password = 'your_robinhood_password'
# Login to Robinhood
r.login(username, password)
@classicvalues
classicvalues / interactive_brokers_all.py
Created September 2, 2024 22:31
Interactive Brokers Trading -ALL ASSETS- API Code
from ib_insync import *
from datetime import datetime, timedelta
import time
# Set up Interactive Brokers connection
ib = IB()
ib.connect('127.0.0.1', 7497, clientId=1) # Modify port and clientId as necessary
# Define the trading parameters
symbol = 'GOOGL'
@classicvalues
classicvalues / alpaca_all.py
Last active September 2, 2024 22:23
Alpaca Trading -ALL ASSETS- API Code
import alpaca_trade_api as tradeapi
import time
from datetime import datetime, timedelta
# Set up Alpaca API credentials
API_KEY = 'your_api_key'
API_SECRET = 'your_api_secret'
BASE_URL = 'https://paper-api.alpaca.markets' # Use the paper trading API for testing
# Initialize the Alpaca API
@classicvalues
classicvalues / Sentament_Base_Words.py
Created August 3, 2024 00:06
Sentiment-based Word Collection Creation
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-405B")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-405B")
# Define a function to generate words based on sentiments
def generate_words(sentiment, num_words):
# Tokenize the sentiment text
inputs = tokenizer.encode_plus(
@classicvalues
classicvalues / Trained_LLM_from_Literature.py
Created July 3, 2024 03:22
A Trained and Fine-Tuned LLM via Publicly Available Literature
import fitz # PyMuPDF
import re
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import AdamW
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def extract_text_from_pdf(pdf_path):