Skip to content

Instantly share code, notes, and snippets.

@classicvalues
Created September 2, 2024 22:40
Show Gist options
  • Save classicvalues/0e2d1652bc73b2d6560b40d6c20f9b7a to your computer and use it in GitHub Desktop.
Save classicvalues/0e2d1652bc73b2d6560b40d6c20f9b7a to your computer and use it in GitHub Desktop.
Binance Trading -ALL ASSETS- API Code
from binance.client import Client
from datetime import datetime, timedelta
import time
# Set up Binance API credentials
api_key = 'YOUR_BINANCE_API_KEY'
api_secret = 'YOUR_BINANCE_API_SECRET'
# Login to Binance
client = Client(api_key, api_secret)
# Define the trading parameters
symbol = 'BTCUSDT' # Trading Bitcoin against USDT
investment_amount = 10.0 # Amount to use per transaction
# Define the time for trading (adjust according to your preferred trading hours)
time_after_open = timedelta(minutes=2)
time_before_close = timedelta(minutes=2)
# Helper function to get the current price
def get_current_price(symbol):
ticker = client.get_symbol_ticker(symbol=symbol)
return float(ticker['price'])
# Helper function to get the current account balance in USDT
def get_account_balance(asset='USDT'):
balance = client.get_asset_balance(asset=asset)
return float(balance['free'])
# Helper function to place orders
def place_order(symbol, quantity, side):
if side == 'buy':
order = client.order_market_buy(symbol=symbol, quantity=quantity)
elif side == 'sell':
order = client.order_market_sell(symbol=symbol, quantity=quantity)
return order
# Helper function to close all positions
def close_all_positions():
# Get all positions (in this case only for the specified symbol)
balance = client.get_asset_balance(asset=symbol[:-4]) # Assuming trading a pair like BTCUSDT
quantity = float(balance['free'])
if quantity > 0:
place_order(symbol, quantity, 'sell')
print("Closed all positions.")
# Trading logic
def trade():
initial_price = get_current_price(symbol)
peak_price = initial_price
trough_price = initial_price
while True:
current_time = datetime.now()
# Since crypto markets are open 24/7, adjust according to your needs
market_open_time = datetime.combine(current_time.date(), datetime.strptime('09:30', '%H:%M').time())
market_close_time = datetime.combine(current_time.date(), datetime.strptime('16:00', '%H:%M').time())
# Calculate trade start and stop times
start_trading_time = market_open_time + time_after_open
stop_trading_time = market_close_time - time_before_close
# Check if current time is within trading hours
if start_trading_time <= current_time <= stop_trading_time:
current_price = get_current_price(symbol)
balance = get_account_balance()
# Update the peak and trough prices
if current_price > peak_price:
peak_price = current_price
if current_price < trough_price:
trough_price = current_price
# Calculate the quantity to buy based on available balance and price
quantity_to_buy = round(investment_amount / current_price, 6) # Adjust precision as needed
# Buy when there's a gain, using all available balance
if current_price > initial_price and balance >= investment_amount:
place_order(symbol, quantity_to_buy, 'buy')
print(f"Bought {quantity_to_buy} {symbol[:-4]} at {current_price} due to price gain.")
wait_for_balance_to_update()
# Sell when there's a loss
holdings = client.get_asset_balance(asset=symbol[:-4])
quantity = float(holdings['free'])
if quantity > 0 and current_price < initial_price:
place_order(symbol, quantity, 'sell')
print(f"Sold all {symbol[:-4]} at {current_price} due to price loss.")
wait_for_balance_to_update()
# Close all positions a couple of minutes before market close
if current_time > stop_trading_time:
close_all_positions()
break # Exit the loop after closing positions for the day
time.sleep(1) # Check as frequently as possible
# Helper function to wait until the account balance updates after a sell
def wait_for_balance_to_update():
while True:
balance = get_account_balance()
if balance >= investment_amount:
break
time.sleep(1)
# Run the trading strategy
trade()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment